skip to main content


Title: Remaining Useful Life Estimation for Ball Bearings Using Feature Engineering and Extreme Learning Machine
Rotating machines, such as pumps and compressors, are critical components in refineries and chemical plants used to transport fluids between processing units. Bearings are often the critical parts of rotating machinery, and their failure could result in economic loss and/or safety issues. Therefore, estimation of the remaining useful life (RUL) of a bearing plays an important role in reducing production losses and avoiding machine damage. Because bearing failure mechanisms tend to be complex and stochastic, data-driven RUL estimation approaches have found more applications. This work proposes a novel RUL estimation method based on systematic feature engineering and extreme learning machine (ELM). The PRONOSTIA dataset is used to demonstrate the effectiveness of the proposed method.  more » « less
Award ID(s):
1805950
NSF-PAR ID:
10346628
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of 13th Dynamics and Control of Process Systems (DYCOPS 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Failure prognostics is the process of predicting the remaining useful life (RUL) of machine components, which is vital for the predictive maintenance of industrial machinery. This paper presents a new deep learning approach for failure prognostics of rolling element bearings based on a Long Short-Term Memory (LSTM) predictor trained simultaneously within a Generative Adversarial Network (GAN) architecture. The LSTM predictor takes the current and past observations of a well-defined health index as an input, uses those to forecast the future degradation trajectory, and then derives the RUL. Our proposed approach has three unique features: (1) Defining the bearing failure threshold by adopting an International Organization of Standardization (ISO) standard, making the approach industry-relevant; (2) Employing a GAN-based data augmentation technique to improve the accuracy and robustness of RUL prediction in cases where the deep learning model has access to only a small amount of training data; (3) Integrating the training process of the LSTM predictor within the GAN architecture. A joint training approach is utilized to ensure that the LSTM predictor model learns both the original and artificially generated data to capture the degradation trajectories. We utilize a publicly available accelerated run-to-failure dataset of rolling element bearings to assess the performance of the proposed approach. Results of a five-fold cross-validation study show that the integration of the LSTM predictor with GAN helps to decrease the average RUL prediction error by 29% over a simple LSTM model without GAN implementation. 
    more » « less
  2. Remaining Useful Life (RUL) estimation is critical in many engineering systems where proper predictive maintenance is needed to increase a unit's effectiveness and reduce time and cost of repairing. Typically for such systems, multiple sensors are normally used to monitor performance, which create difficulties for system state identification. In this paper, we develop a semi-supervised left-to-right constrained Hidden Markov Model (HMM) model, which is effective in estimating the RUL, while capturing the jumps among states in condition dynamics. In addition, based on the HMM model learned from multiple sensors, we build a Partial Observable Markov Decision Process (POMDP) to demonstrate how such RUL estimation can be effectively used for optimal preventative maintenance decision making. We apply this technique to the NASA Engine degradation data and demonstrate the effectiveness of the proposed method. 
    more » « less
  3. Wang, Dong (Ed.)
    Lithium-ion batteries have been extensively used to power portable electronics, electric vehicles, and unmanned aerial vehicles over the past decade. Aging decreases the capacity of Lithium-ion batteries. Therefore, accurate remaining useful life (RUL) prediction is critical to the reliability, safety, and efficiency of the Lithium-ion battery-powered systems. However, battery aging is a complex electrochemical process affected by internal aging mechanisms and operating conditions (e.g., cycle time, environmental temperature, and loading condition). In this paper, a physics-informed machine learning method is proposed to model the degradation trend and predict the RUL of Lithium-ion batteries while accounting for battery health and operating conditions. The proposed physics-informed long short-term memory (PI-LSTM) model combines a physics-based calendar and cycle aging (CCA) model with an LSTM layer. The CCA model measures the aging effect of Lithium-ion batteries by combining five operating stress factor models. The PI-LSTM uses an LSTM layer to learn the relationship between the degradation trend determined by the CCA model and the online monitoring data of different cycles (i.e., voltage, current, and cell temperature). After the degradation pattern of a battery is estimated by the PI-LSTM model, another LSTM model is then used to predict the future degradation and remaining useful life (RUL) of the battery by learning the degradation trend estimated by the PI-LSTM model. Monitoring data of eleven Lithium-ion batteries under different operating conditions was used to demonstrate the proposed method. Experimental results have shown that the proposed method can accurately model the degradation behavior as well as predict the RUL of Lithium-ion batteries under different operating conditions. 
    more » « less
  4. In this work, we present a new approach for latent system dynamics and remaining useful life (RUL) estimation of complex degrading systems using generative modeling and reinforcement learning. The main contributions of the proposed method are two-fold. First, we show how a deep generative model can approximate the functionality of high-fidelity simulators and, thus, is able to substitute expensive and complex physics-based models with data-driven surrogate ones. In other words, we can use the generative model in lieu of the actual system as a surrogate model of the system. Furthermore, we show how to use such surrogate models for predictive analytics. Our method follows two main steps. First, we use a deep variational autoencoder (VAE) to learn the distribution over the latent state-space that characterizes the dynamics of the system under monitoring. After model training, the probabilistic VAE decoder becomes the surrogate system model. Then, we develop a scalable reinforcement learning framework using the decoder as the environment, to train an agent for identifying adequate approximate values of the latent dynamics, as well as the RUL.To our knowledge, the method presented in this paper is the first in industrial prognostics that utilizes generative models and reinforcement learning in that capacity. While the process requires extensive data preprocessing and environment tailored design, which is not always possible, it demonstrates the ability of generative models working in conjunction with reinforcement learning to provide proper value estimations for system dynamics and their RUL. To validate the quality of the proposed method, we conducted numerical experiments using the train_FD002 dataset provided by the NASA CMAPSS data repository. Different subsets were used to train the VAE and the RL agent, and a leftover set was then used for model validation. The results shown prove the merit of our method and will further assist us in developing a data-driven RL environment that incorporates more complex latent dynamic layers, such as normal/faulty operating conditions and hazard processes. 
    more » « less
  5. Achieving accurate remaining useful life (RUL) prediction for prognostic and health management (PHM) depends upon sufficient prior degradation apprehension of critical components within the system. However, such prior knowledge is not always readily available in practice. We alleviate this shortcoming by proposing a novel data-driven framework that is capable of providing accurate RUL prediction without the need for any prior failure threshold knowledge. Correlative and monotonic metrics are utilized to identify critical features throughout the degradation progress. Subsequently, we append one-hot health state indicators to extracted degrading features, which are utilized together as adversarial training data for a Long Short-Term Memory (LSTM) network-based model. Finally, we utilize a fully connected layer to project the LSTM outputs into the parameters of a Gaussian mixture model (GMM) in conjunction with a categorical distribution, from which the long-term degradation progress is sampled. We verify the performance of the proposed framework using aeroengine health data simulated by Modular Aero-Propulsion System Simulation (MAPSS), and the results demonstrate that significant performance improvement can be achieved for long-term degradation progress and RUL prediction tasks. 
    more » « less