skip to main content


Title: High-resolution CARMA Observation of Molecular Gas in the North America and Pelican Nebulae
Abstract In this paper, we present the first results from a CARMA high-resolution 12 CO(1-0), 13 CO(1-0), and C 18 O(1-0) molecular line survey of the North America and Pelican (NAP) Nebulae. CARMA observations have been combined with single-dish data from the Purple Mountain 13.7 m telescope, to add short spacings and to produce high-dynamic-range images. We find that the molecular gas is predominantly shaped by the W80 H ii bubble, driven by an O star. Several bright rims noted in the observation are probably remnant molecular clouds, heated and stripped by the massive star. Matching these rims in molecular lines and optical images, we construct a model of the three-dimensional structure of the NAP complex. Two groups of molecular clumps/filaments are on the near side of the bubble: one is being pushed toward us, whereas the other is moving toward the bubble. Another group is on the far side of the bubble, and moving away. The young stellar objects in the Gulf region reside in three different clusters, each hosted by a cloud from one of the three molecular clump groups. Although all gas content in the NAP is impacted by feedback from the central O star, some regions show no signs of star formation, while other areas clearly exhibit star formation activity. Additional molecular gas being carved by feedback includes cometary structures in the Pelican Head region, and the boomerang features at the boundary of the Gulf region. The results show that the NAP complex is an ideal place for the study of feedback effects on star formation.  more » « less
Award ID(s):
2009842
NSF-PAR ID:
10347680
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astronomical Journal
Volume:
161
Issue:
5
ISSN:
0004-6256
Page Range / eLocation ID:
229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02  − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1  − 0 1 ), (1 2  − 0 1 ), and (1 0  − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02  − 1 11 ) and (2 20  − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2  − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement of the total mass of molecular gas and an anchor for a CO excitation analysis. In addition, we present Hubble Space Telescope imaging that reveals the foreground lensing galaxy in the near-infrared (1.15  μ m). Together with photometric data from the Gran Telescopio Canarias, we derive a photometric redshift of z phot = 0.9 −0.5 +0.3 for the foreground lensing galaxy. Modeling the lensing of HerBS-89a, we reconstruct the dust continuum (magnified by a factor μ  ≃ 5.0) and molecular emission lines (magnified by μ  ∼ 4 − 5) in the source plane, which probe scales of ∼0 . ″1 (or 800 pc). The 12 CO(9 − 8) and H 2 O(2 02  − 1 11 ) emission lines have comparable spatial and kinematic distributions; the source-plane reconstructions do not clearly distinguish between a one-component and a two-component scenario, but the latter, which reveals two compact rotating components with sizes of ≈1 kpc that are likely merging, more naturally accounts for the broad line widths observed in HerBS-89a. In the core of HerBS-89a, very dense gas with n H 2  ∼ 10 7 − 9 cm −3 is revealed by the NH 2 emission lines and the possible HCN(11 − 10) absorption line. HerBS-89a is a powerful star forming galaxy with a molecular gas mass of M mol  = (2.1 ± 0.4) × 10 11   M ⊙ , an infrared luminosity of L IR  = (4.6 ± 0.4) × 10 12   L ⊙ , and a dust mass of M dust  = (2.6 ± 0.2) × 10 9   M ⊙ , yielding a dust-to-gas ratio δ GDR  ≈ 80. We derive a star formation rate SFR = 614 ± 59  M ⊙ yr −1 and a depletion timescale τ depl  = (3.4 ± 1.0) × 10 8 years. The OH + and CH + absorption lines, which trace low (∼100 cm −3 ) density molecular gas, all have their main velocity component red-shifted by Δ V  ∼ 100 km s −1 relative to the global CO reservoir. We argue that these absorption lines trace a rare example of gas inflow toward the center of a galaxy, indicating that HerBS-89a is accreting gas from its surroundings. 
    more » « less
  2. Abstract

    We report on the discovery of linear filaments observed in the CO(1-0) emission for a ∼2′ field of view toward the Sgr E star-forming region, centered at (l,b) = (358.°720, 0.°011). The Sgr E region is thought to be at the turbulent intersection of the “far dust lane” associated with the Galactic bar and the Central Molecular Zone (CMZ). This region is subject to strong accelerations, which are generally thought to inhibit star formation, yet Sgr E contains a large number of Hiiregions. We present12CO(1-0),13CO(1-0), and C18O(1-0) spectral line observations from the Atacama Large Millimeter/submillimeter Array and provide measurements of the physical and kinematic properties for two of the brightest filaments. These filaments have widths (FWHMs) of ∼0.1 pc and are oriented nearly parallel to the Galactic plane, with angles from the Galactic plane of ∼2°. The filaments are elongated, with lower-limit aspect ratios of ∼5:1. For both filaments, we detect two distinct velocity components that are separated by about 15 km s−1. In the C18O spectral line data, with ∼0.09 pc spatial resolution, we find that these velocity components have relatively narrow (∼1–2 km s−1) FWHM line widths when compared to other sources toward the Galactic center. The properties of these filaments suggest that the gas in the Sgr E complex is being “stretched,” as it is rapidly accelerated by the gravitational field of the Galactic bar while falling toward the CMZ, a result that could provide insights into the extreme environment surrounding this region and the large-scale processes that fuel this environment.

     
    more » « less
  3. null (Ed.)
    Abstract We introduce new analysis methods for studying the star cluster formation processes in Orion A, especially examining the scenario of a cloud–cloud collision. We utilize the CARMA–NRO Orion survey 13CO (1–0) data to compare molecular gas to the properties of young stellar objects from the SDSS III IN-SYNC survey. We show that the increase of $v_{\rm {}^{13}CO} - v_{\rm YSO}$ and Σ scatter of older YSOs can be signals of cloud–cloud collision. SOFIA-upGREAT 158 μm [C ii] archival data toward the northern part of Orion A are also compared to the 13CO data to test whether the position and velocity offsets between the emission from these two transitions resemble those predicted by a cloud–cloud collision model. We find that the northern part of Orion A, including regions ONC-OMC-1, OMC-2, OMC-3, and OMC-4, shows qualitative agreements with the cloud–cloud collision scenario, while in one of the southern regions, NGC 1999, there is no indication of such a process in causing the birth of new stars. On the other hand, another southern cluster, L 1641 N, shows slight tendencies of cloud–cloud collision. Overall, our results support the cloud–cloud collision process as being an important mechanism for star cluster formation in Orion A. 
    more » « less
  4. Context. LDN 1157 is one of several clouds that are situated in the cloud complex LDN 1147/1158. The cloud presents a coma-shaped morphology with a well-collimated bipolar outflow emanating from a Class 0 protostar, LDN 1157-mm, that resides deep inside the cloud. Aims. The main goals of this work are (a) mapping the intercloud magnetic field (ICMF) geometry of the region surrounding LDN 1157 to investigate its relationship with the cloud morphology, outflow direction, and core magnetic field (CMF) geometry inferred from the millimeter- and submillimeter polarization results from the literature, and (b) to investigate the kinematic structure of the cloud. Methods. We carried out optical ( R -band) polarization observations of the stars projected on the cloud to map the parsec-scale magnetic field geometry. We made spectroscopic observations of the entire cloud in the 12 CO, C 18 O, and N 2 H + ( J = 1–0) lines to investigate its kinematic structure. Results. We obtained a distance of 340 ± 3 pc to the LDN 1147/1158, complex based on the Gaia DR2 parallaxes and proper motion values of the three young stellar objects (YSOs) associated with the complex. A single filament of ~1.2 pc in length (traced by the Filfinder algorithm) and ~0.09 pc in width (estimated using the Radfil algorithm) is found to run throughout the coma-shaped cloud. Based on the relationships between the ICMF, CMF, filament orientations, outflow direction, and the hourglass morphology of the magnetic field, it is likely that the magnetic field played an important role in the star formation process in LDN 1157. LDN 1157-mm is embedded in one of the two high-density peaks detected using the Clumpfind algorithm. The two detected clumps lie on the filament and show a blue-red asymmetry in the 12 CO line. The C 18 O emission is well correlated with the filament and presents a coherent structure in velocity space. Combining the proper motions of the YSOs and the radial velocity of LDN 1147/1158 and an another complex, LDN 1172/1174, that is situated ~2° east of it, we found that the two complexes are moving collectively toward the Galactic plane. The filamentary morphology of the east-west segment of LDN 1157 may have formed as a result of mass lost by ablation through interaction of the moving cloud with the ambient interstellar medium. 
    more » « less
  5. Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.

     
    more » « less