skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The hit-and-run version of top-to-random
Abstract We study an example of a hit-and-run random walk on the symmetric group $$\mathbf S_n$$ . Our starting point is the well-understood top-to-random shuffle. In the hit-and-run version, at each single step , after picking the point of insertion j uniformly at random in $$\{1,\ldots,n\}$$ , the top card is inserted in the j th position k times in a row, where k is uniform in $$\{0,1,\ldots,j-1\}$$ . The question is, does this accelerate mixing significantly or not? We show that, in $L^2$ and sup-norm, this accelerates mixing at most by a constant factor (independent of n ). Analyzing this problem in total variation is an interesting open question. We show that, in general, hit-and-run random walks on finite groups have non-negative spectrum.  more » « less
Award ID(s):
1645643 2054593
PAR ID:
10347763
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Probability
ISSN:
0021-9002
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Buchin, Kevin; Colin de Verdi\` (Ed.)
    The Gibbs Sampler is a general method for sampling high-dimensional distributions, dating back to 1971. In each step of the Gibbs Sampler, we pick a random coordinate and re-sample that coordinate from the distribution induced by fixing all the other coordinates. While it has become widely used over the past half-century, guarantees of efficient convergence have been elusive. We show that for a convex body K in ℝⁿ with diameter D, the mixing time of the Coordinate Hit-and-Run (CHAR) algorithm on K is polynomial in n and D. We also give a lower bound on the mixing rate of CHAR, showing that it is strictly worse than hit-and-run and the ball walk in the worst case. 
    more » « less
  2. Let $$N=\binom{n}{2}$$ and $$s\geq 2$$. Let $$e_{i,j},\,i=1,2,\ldots,N,\,j=1,2,\ldots,s$$ be $$s$$ independent permutations of the edges $$E(K_n)$$ of the complete graph $$K_n$$. A MultiTree is a set $$I\subseteq [N]$$ such that the edge sets $$E_{I,j}$$ induce spanning trees for $$j=1,2,\ldots,s$$. In this paper we study the following question: what is the smallest $m=m(n)$ such that w.h.p. $[m]$ contains a MultiTree. We prove a hitting time result for $s=2$ and an $$O(n\log n)$$ bound for $$s\geq 3$$. 
    more » « less
  3. Agrawal, Shipra; Roth, Aaron (Ed.)
    We consider the problem of \emph{identifying,} from statistics, a distribution of discrete random variables $$X_1 \ldots,X_n$$ that is a mixture of $$k$$ product distributions. The best previous sample complexity for $$n \in O(k)$$ was $$(1/\zeta)^{O(k^2 \log k)}$$ (under a mild separation assumption parameterized by $$\zeta$$). The best known lower bound was $$\exp(\Omega(k))$$. It is known that $$n\geq 2k-1$$ is necessary and sufficient for identification. We show, for any $$n\geq 2k-1$$, how to achieve sample complexity and run-time complexity $$(1/\zeta)^{O(k)}$$. We also extend the known lower bound of $$e^{\Omega(k)}$$ to match our upper bound across a broad range of $$\zeta$$. Our results are obtained by combining (a) a classic method for robust tensor decomposition, (b) a novel way of bounding the condition number of key matrices called Hadamard extensions, by studying their action only on flattened rank-1 tensors. 
    more » « less
  4. Abstract Let$$p_{1},\ldots ,p_{n}$$ p 1 , , p n be a set of points in the unit square and let$$T_{1},\ldots ,T_{n}$$ T 1 , , T n be a set of$$\delta $$ δ -tubes such that$$T_{j}$$ T j passes through$$p_{j}$$ p j . We prove a lower bound for the number of incidences between the points and tubes under a natural regularity condition (similar to Frostman regularity). As a consequence, we show that in any configuration of points$$p_{1},\ldots , p_{n} \in [0,1]^{2}$$ p 1 , , p n [ 0 , 1 ] 2 along with a line$$\ell _{j}$$ j through each point$$p_{j}$$ p j , there exist$$j\neq k$$ j k for which$$d(p_{j}, \ell _{k}) \lesssim n^{-2/3+o(1)}$$ d ( p j , k ) n 2 / 3 + o ( 1 ) . It follows from the latter result that any set of$$n$$ n points in the unit square contains three points forming a triangle of area at most$$n^{-7/6+o(1)}$$ n 7 / 6 + o ( 1 ) . This new upper bound for Heilbronn’s triangle problem attains the high-low limit established in our previous work arXiv:2305.18253. 
    more » « less
  5. Abstract The hedgehog H t is a 3-uniform hypergraph on vertices $$1, \ldots ,t + \left({\matrix{t \cr 2}}\right)$$ such that, for any pair ( i , j ) with 1 ≤ i < j ≤ t , there exists a unique vertex k > t such that { i , j , k } is an edge. Conlon, Fox and Rödl proved that the two-colour Ramsey number of the hedgehog grows polynomially in the number of its vertices, while the four-colour Ramsey number grows exponentially in the square root of the number of vertices. They asked whether the two-colour Ramsey number of the hedgehog H t is nearly linear in the number of its vertices. We answer this question affirmatively, proving that r ( H t ) = O ( t 2 ln t ). 
    more » « less