skip to main content

This content will become publicly available on July 10, 2023

Title: XMA: A Crossbar-aware Multi-task Adaption Framework via Shift-based Mask Learning Method
ReRAM crossbar array as a high-parallel fast and energy-efficient structure attracts much attention, especially on the acceleration of Deep Neural Network (DNN) inference on one specific task. However, due to the high energy consumption of weight re-programming and the ReRAM cells’ low endurance problem, adapting the crossbar array for multiple tasks has not been well explored. In this paper, we propose XMA, a novel crossbar-aware shift-based mask learning method for multiple task adaption in the ReRAM crossbar DNN accelerator for the first time. XMA leverages the popular mask-based learning algorithm’s benefit to mitigate catastrophic forgetting and learn a task-specific, crossbar column-wise, and shift-based multi-level mask, rather than the most commonly used elementwise binary mask, for each new task based on a frozen backbone model. With our crossbar-aware design innovation, the required masking operation to adapt for a new task could be implemented in an existing crossbar-based convolution engine with minimal hardware/memory overhead and, more importantly, no need for power-hungry cell re-programming, unlike prior works. The extensive experimental results show that, compared with state-of-the art multiple task adaption Piggyback method [1], XMA achieves 3.19% higher accuracy on average, while saving 96.6% memory overhead. Moreover, by eliminating cell re-programming, XMA achieves ∼4.3× more » higher energy efficiency than Piggyback. « less
; ; ; ; ;
Award ID(s):
2003749 1931871 2144751
Publication Date:
Journal Name:
Design Automation Conference (DAC)
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, utilizing ReRAM crossbar array to accelerate DNN inference on single task has been widely studied. However, using the crossbar array for multiple task adaption has not been well explored. In this paper, for the first time, we propose XBM, a novel crossbar column-wise binary mask learning method for multiple task adaption in ReRAM crossbar DNN accelerator. XBM leverages the mask-based learning algorithm's benefit to avoid catastrophic forgetting to learn a task-specific mask for each new task. With our hardware-aware design innovation, the required masking operation to adapt for a new task could be easily implemented in existing crossbar basedmore »convolution engine with minimal hardware/ memory overhead and, more importantly, no need of power hungry cell re-programming, unlike prior works. The extensive experimental results show that compared with state-of-the-art multiple task adaption methods, XBM keeps the similar accuracy on new tasks while only requires 1.4% mask memory size compared with popular piggyback. Moreover, the elimination of cell re-programming or tuning saves up to 40% energy during new task adaption.« less
  2. Deep Neural Networks (DNN) could forget the knowledge about earlier tasks when learning new tasks, and this is known as catastrophic forgetting. To learn new task without forgetting, recently, the mask-based learning method (e.g. piggyback ) is proposed to address these issues by learning only a binary element-wise mask, while keeping the backbone model fixed. However, the binary mask has limited modeling capacity for new tasks. A more recent work proposes a compress-grow-based method (CPG) to achieve better accuracy for new tasks by partially training backbone model, but with order-higher training cost, which makes it infeasible to be deployed intomore »popular state-of-the-art edge-/mobile-learning. The primary goal of this work is to simultaneously achieve fast and high-accuracy multi-task adaption in a continual learning setting. Thus motivated, we propose a new training method called Kernel-wise Soft Mask (KSM), which learns a kernel-wise hybrid binary and real-value soft mask for each task. Such a soft mask can be viewed as a superposition of a binary mask and a properly scaled real-value tensor, which offers a richer representation capability without low-level kernel support to meet the objective of low hardware overhead. We validate KSM on multiple benchmark datasets against recent state-of-the-art methods (e.g. Piggyback, Packnet, CPG, etc.), which shows good improvement in both accuracy and training cost.« less
  3. Leveraging the ReRAM crossbar-based In-Memory-Computing (IMC) to accelerate single task DNN inference has been widely studied. However, using the ReRAM crossbar for continual learning has not been explored yet. In this work, we propose XST, a novel crossbar column-wise sparse training framework for continual learning. XST significantly reduces the training cost and saves inference energy. More importantly, it is friendly to existing crossbar-based convolution engine with almost no hardware overhead. Compared with the state-of-the-art CPG method, the experiments show that XST's accuracy achieves 4.95 % higher accuracy. Furthermore, XST demonstrates ~5.59 × training speedup and 1.5 × inference energy-saving.
  4. In this work, we investigate various non-ideal effects (Stuck-At-Fault (SAF), IR-drop, thermal noise, shot noise, and random telegraph noise)of ReRAM crossbar when employing it as a dot-product engine for deep neural network (DNN) acceleration. In order to examine the impacts of those non-ideal effects, we first develop a comprehensive framework called PytorX based on main-stream DNN pytorch framework. PytorX could perform end-to-end training, mapping, and evaluation for crossbar-based neural network accelerator, considering all above discussed non-ideal effects of ReRAM crossbar together. Experiments based on PytorX show that directly mapping the trained large scale DNN into crossbar without considering these non-idealmore »effects could lead to a complete system malfunction (i.e., equal to random guess) when the neural network goes deeper and wider. In particular, to address SAF side effects, we propose a digital SAF error correction algorithm to compensate for crossbar output errors, which only needs one-time profiling to achieve almost no system accuracy degradation. Then, to overcome IR drop effects, we propose a Noise Injection Adaption (NIA) methodology by incorporating statistics of current shift caused by IR drop in each crossbar as stochastic noise to DNN training algorithm, which could efficiently regularize DNN model to make it intrinsically adaptive to non-ideal ReRAM crossbar. It is a one-time training method without the request of retraining for every specific crossbar. Optimizing system operating frequency could easily take care of rest non-ideal effects. Various experiments on different DNNs using image recognition application are conducted to show the efficacy of our proposed methodology.« less
  5. Deep neural networks (DNNs) emerge as a key component in various applications. However, the ever-growing DNN size hinders efficient processing on hardware. To tackle this problem, on the algorithmic side, compressed DNN models are explored, of which block-circulant DNN models are memory efficient and hardware-friendly; on the hardware side, resistive random-access memory (ReRAM) based accelerators are promising for in-situ processing of DNNs. In this work, we design an accelerator named ReBoc for accelerating block-circulant DNNs in ReRAM to reap the benefits of light-weight models and efficient in-situ processing simultaneously. We propose a novel mapping scheme which utilizes Horizontal Weight Slicingmore »and Intra-Crossbar Weight Duplication to map block-circulant DNN models onto ReRAM crossbars with significant improved crossbar utilization. Moreover, two specific techniques, namely Input Slice Reusing and Input Tile Sharing are introduced to take advantage of the circulant calculation feature in block- circulant DNNs to reduce data access and buffer size. In REBOC, a DNN model is executed within an intra-layer processing pipeline and achieves respectively 96× and 8.86× power efficiency improvement compared to the state-of-the-art FPGA and ASIC accelerators for block-circulant neural networks. Compared to ReRAM-based DNN accelerators, REBOC achieves averagely 4.1× speedup and 2.6× energy reduction.« less