skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: XST: A Crossbar Column-wise Sparse Training for Efficient Continual Learning
Leveraging the ReRAM crossbar-based In-Memory-Computing (IMC) to accelerate single task DNN inference has been widely studied. However, using the ReRAM crossbar for continual learning has not been explored yet. In this work, we propose XST, a novel crossbar column-wise sparse training framework for continual learning. XST significantly reduces the training cost and saves inference energy. More importantly, it is friendly to existing crossbar-based convolution engine with almost no hardware overhead. Compared with the state-of-the-art CPG method, the experiments show that XST's accuracy achieves 4.95 % higher accuracy. Furthermore, XST demonstrates ~5.59 × training speedup and 1.5 × inference energy-saving.  more » « less
Award ID(s):
2003749 1931871 2144751
PAR ID:
10348290
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)
Page Range / eLocation ID:
48 to 51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, ReRAM crossbar-based deep neural network (DNN) accelerator has been widely investigated. However, most prior works focus on single-task inference due to the high energy consumption of weight reprogramming and ReRAM cells’ low endurance issue. Adapting the ReRAM crossbar-based DNN accelerator for multiple tasks has not been fully explored. In this study, we propose XMA 2 , a novel crossbar-aware learning method with a 2-tier masking technique to efficiently adapt a DNN backbone model deployed in the ReRAM crossbar for new task learning. During the XMA 2 -based multi-task adaption (MTA), the tier-1 ReRAM crossbar-based processing-element- (PE-) wise mask is first learned to identify the most critical PEs to be reprogrammed for essential new features of the new task. Subsequently, the tier-2 crossbar column-wise mask is applied within the rest of the weight-frozen PEs to learn a hardware-friendly and column-wise scaling factor for new task learning without modifying the weight values. With such crossbar-aware design innovations, we could implement the required masking operation in an existing crossbar-based convolution engine with minimal hardware/memory overhead to adapt to a new task. The extensive experimental results show that compared with other state-of-the-art multiple-task adaption methods, XMA 2 achieves the highest accuracy on all popular multi-task learning datasets. 
    more » « less
  2. ReRAM crossbar array as a high-parallel fast and energy-efficient structure attracts much attention, especially on the acceleration of Deep Neural Network (DNN) inference on one specific task. However, due to the high energy consumption of weight re-programming and the ReRAM cells’ low endurance problem, adapting the crossbar array for multiple tasks has not been well explored. In this paper, we propose XMA, a novel crossbar-aware shift-based mask learning method for multiple task adaption in the ReRAM crossbar DNN accelerator for the first time. XMA leverages the popular mask-based learning algorithm’s benefit to mitigate catastrophic forgetting and learn a task-specific, crossbar column-wise, and shift-based multi-level mask, rather than the most commonly used elementwise binary mask, for each new task based on a frozen backbone model. With our crossbar-aware design innovation, the required masking operation to adapt for a new task could be implemented in an existing crossbar-based convolution engine with minimal hardware/memory overhead and, more importantly, no need for power-hungry cell re-programming, unlike prior works. The extensive experimental results show that, compared with state-of-the art multiple task adaption Piggyback method [1], XMA achieves 3.19% higher accuracy on average, while saving 96.6% memory overhead. Moreover, by eliminating cell re-programming, XMA achieves ∼4.3× higher energy efficiency than Piggyback. 
    more » « less
  3. Recently, utilizing ReRAM crossbar array to accelerate DNN inference on single task has been widely studied. However, using the crossbar array for multiple task adaption has not been well explored. In this paper, for the first time, we propose XBM, a novel crossbar column-wise binary mask learning method for multiple task adaption in ReRAM crossbar DNN accelerator. XBM leverages the mask-based learning algorithm's benefit to avoid catastrophic forgetting to learn a task-specific mask for each new task. With our hardware-aware design innovation, the required masking operation to adapt for a new task could be easily implemented in existing crossbar based convolution engine with minimal hardware/ memory overhead and, more importantly, no need of power hungry cell re-programming, unlike prior works. The extensive experimental results show that compared with state-of-the-art multiple task adaption methods, XBM keeps the similar accuracy on new tasks while only requires 1.4% mask memory size compared with popular piggyback. Moreover, the elimination of cell re-programming or tuning saves up to 40% energy during new task adaption. 
    more » « less
  4. While RRAM crossbar-based In-Memory Computing (IMC) has proven highly effective in accelerating Deep Neural Networks (DNNs) inference, RRAM-based on-device training is less explored due to its high energy consumption of weight re-programming and cells' low endurance problem. Besides, emerging trends indicate a need for on-device continual learning which sequentially acquires knowledge from multiple tasks to enhance user's experiences and eliminate data privacy concerns. However, learning on each new task leads to forgetting prior learned knowledge on prior tasks, which is known as catastrophic forgetting. To address these challenges, we are the first to propose a novel training framework, Hyb-Learn, for enabling on-device continual learning with a hybrid RRAM/SRAM IMC architecture design. Specifically, when training each new arriving task, our approach first partitions the model into two groups based on the proposed task-correlated PE-wise correlation to freeze or re-training, and correspondingly mapping to RRAM and SRAM, respectively. In practice, the RRAM stores frozen weights with strong task correlation to prior tasks to eliminate the high cost of weight reprogramming issue of RRAM, while the SRAM stores the remaining weights that will be updated. Furthermore, to maximize the freezing ratio for improving training efficiency while maintaining accuracy and mitigating catastrophic forgetting, we incorporate self-supervised learning algorithms that are initialized from a pre-trained model for training each new task. 
    more » « less
  5. In this work, we investigate various non-ideal effects (Stuck-At-Fault (SAF), IR-drop, thermal noise, shot noise, and random telegraph noise)of ReRAM crossbar when employing it as a dot-product engine for deep neural network (DNN) acceleration. In order to examine the impacts of those non-ideal effects, we first develop a comprehensive framework called PytorX based on main-stream DNN pytorch framework. PytorX could perform end-to-end training, mapping, and evaluation for crossbar-based neural network accelerator, considering all above discussed non-ideal effects of ReRAM crossbar together. Experiments based on PytorX show that directly mapping the trained large scale DNN into crossbar without considering these non-ideal effects could lead to a complete system malfunction (i.e., equal to random guess) when the neural network goes deeper and wider. In particular, to address SAF side effects, we propose a digital SAF error correction algorithm to compensate for crossbar output errors, which only needs one-time profiling to achieve almost no system accuracy degradation. Then, to overcome IR drop effects, we propose a Noise Injection Adaption (NIA) methodology by incorporating statistics of current shift caused by IR drop in each crossbar as stochastic noise to DNN training algorithm, which could efficiently regularize DNN model to make it intrinsically adaptive to non-ideal ReRAM crossbar. It is a one-time training method without the request of retraining for every specific crossbar. Optimizing system operating frequency could easily take care of rest non-ideal effects. Various experiments on different DNNs using image recognition application are conducted to show the efficacy of our proposed methodology. 
    more » « less