Highly doped semiconductor “designer metals” have been shown to serve as high-quality plasmonic materials across much of the long-wavelength portion of the mid-infrared. These plasmonic materials benefit from a technologically mature semiconductor fabrication infrastructure and the potential for monolithic integration with electronic and photonic devices. However, accessing the short-wavelength side of the mid-infrared is a challenge for these designer metals. In this work we study the perspectives for extending the plasmonic response of doped semiconductors to shorter wavelengths by leveraging charge confinement, in addition to doping. We demonstrate, theoretically and experimentally, negative permittivity across the technologically vital mid-wave infrared (3–5 m) frequency range. The semiconductor composites presented in our work offer an ideal material platform for monolithic integration with a variety of semiconductor optoelectronic devices operating in the mid-wave infrared.
more »
« less
All-epitaxial, laterally structured plasmonic materials
Optoelectronic devices in the mid-infrared have attracted significant interest due to numerous potential applications in communications and sensing. Molecular beam epitaxial (MBE) growth of highly doped InAs has emerged as a promising “designer metal” platform for the plasmonic enhancement of mid-infrared devices. However, while typical plasmonic materials can be patterned to engineer strong localized resonances, the lack of lateral control in conventional MBE growth makes it challenging to create similar structures compatible with monolithically grown plasmonic InAs. To this end, we report the growth of highly doped InAs plasmonic ridges for the localized resonant enhancement of mid-IR emitters and absorbers. Furthermore, we demonstrate a method for regaining a planar surface above plasmonic corrugations, creating a pathway to epitaxially integrate these structures into active devices that leverage conventional growth and fabrication techniques.
more »
« less
- PAR ID:
- 10348350
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 120
- Issue:
- 16
- ISSN:
- 0003-6951
- Page Range / eLocation ID:
- 161103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There are a range of fundamental challenges associated with scaling optoelectronic devices down to the nano-scale, and the past decades have seen significant research dedicated to the development of sub-diffraction-limit optical devices, often relying on the plasmonic response of metal structures. At the longer wavelengths associated with the mid-infrared, dramatic changes in the optical response of traditional nanophotonic materials, reduced efficiency optoelectronic active regions, and a host of deleterious and/or parasitic effects makes nano-scale optoelectronics at micro-scale wavelengths particularly challenging. In this Perspective, we describe recent work leveraging a class of infrared plasmonic materials, highly doped semiconductors, which not only support sub-diffraction-limit plasmonic modes at long wavelengths, but which can also be integrated into a range of optoelectronic device architectures. We discuss how the wavelength-dependent optical response of these materials can serve a number of different photonic device designs, including dielectric waveguides, epsilon-near-zero dynamic optical devices, cavity-based optoelectronics, and plasmonic device architectures. We present recent results demonstrating that the highly doped semiconductor class of materials offers the opportunity for monolithic, all-epitaxial, device architectures out-performing current state of the art commercial devices, and discuss the perspectives and promise of these materials for infrared nanophotonic optoelectronics.more » « less
-
Ultrathin and two-dimensional (2D) metals can support strong plasmons, with concomitant tight field confinement and large field enhancement. Accordingly, 2D-metal nanostructures exhibiting plasmonic resonances are highly sensitive to the environment and intrinsically suitable for optical sensing. Here, based on a proof-of-concept numerical study, nano-engineered ultrathin 2D-metal films that support infrared plasmons are demonstrated to enable highly responsive refractive index (RI) sensing. For 3 nm-Au nanoribbons exhibiting plasmonic resonances at wavelengths around 1600 nm, a RI sensitivity of SRI > 650 nm per refractive index unit (RIU) is observed for a 100 nm-thick analyte layer. A parametric study of the 2D-Au system indicates the strong dependence of the RI sensitivity on the 2D-metal thickness. Furthermore, for an analyte layer as thin as 1 nm, a RI sensitivity up to 110 (90 nm/RIU) is observed in atomically thin 2D-In (2D-Ga) nanoribbons exhibiting highly localized plasmonic resonances at mid-infrared wavelengths. Our results not only reveal the extraordinary sensing characteristics of 2D-metal systems but also provide insight into the development of 2D-metal-based plasmonic devices for enhanced IR detection.more » « less
-
Semiconductors such as InAs with high dopant concentrations have a variety of applications, including as components of mid-infrared optoelectronic devices. Unfortunately, growth of these materials by molecular beam epitaxy is challenging, requiring high growth rates and low growth temperatures. We show that the use of a bismuth surfactant improves silicon incorporation into InAs while simultaneously reducing the optical scattering rate, increasing the carrier mobility, reducing surface roughness, and enabling growth at higher substrate temperatures and slower growth rates. We explain our findings using microscopic theories of dopant segregation and defect formation in III-V materials.more » « less
-
Abstract Doped heavy metal‐free III–V semiconductor nanocrystal quantum dots (QDs) are of great interest both from the fundamental aspects of doping in highly confined structures, and from the applicative side of utilizing such building blocks in the fabrication of p–n homojunction devices. InAs nanocrystals (NCs), that are of particular relevance for short‐wave IR detection and emission applications, manifest heavy n‐type character poising a challenge for their transition to p‐type behavior. The p‐type doping of InAs NCs is presented with Zn – enabling control over the charge carrier type in InAs QDs field effect transistors. The post‐synthesis doping reaction mechanism is studied for Zn precursors with varying reactivity. Successful p‐type doping is achieved by the more reactive precursor, diethylzinc. Substitutional doping by Zn2+replacing In3+is established by X‐ray absorption spectroscopy analysis. Furthermore, enhanced near infrared photoluminescence is observed due to surface passivation by Zn as indicated from elemental mapping utilizing high‐resolution electron microscopy corroborated by X‐ray photoelectron spectroscopy study. The demonstrated ability to control the carrier type, along with the improved emission characteristics, paves the way towards fabrication of optoelectronic devices active in the short‐wave infrared region utilizing heavy‐metal free nanocrystal building blocks.more » « less