skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relaxing Local Robustness
Certifiable local robustness, which rigorously precludes small-norm adversarial examples, has received significant attention as a means of addressing security concerns in deep learning. However, for some classification problems, local robustness is not a natural objective, even in the presence of adversaries; for example, if an image contains two classes of subjects, the correct label for the image may be considered arbitrary between the two, and thus enforcing strict separation between them is unnecessary. In this work, we introduce two relaxed safety properties for classifiers that address this observation: (1) relaxed top-k robustness, which serves as the analogue of top-k accuracy; and (2) affinity robustness, which specifies which sets of labels must be separated by a robustness margin, and which can be -close in `p space. We show how to construct models that can be efficiently certified against each relaxed robustness property, and trained with very little overhead relative to standard gradient descent. Finally, we demonstrate experimentally that these relaxed variants of robustness are well-suited to several significant classification problems, leading to lower rejection rates and higher certified accuracies than can be obtained when certifying “standard” local robustness.  more » « less
Award ID(s):
1943016
PAR ID:
10348725
Author(s) / Creator(s):
;
Date Published:
Journal Name:
35th Conference on Neural Information Processing Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Randomized smoothing has been shown to provide good certified-robustness guarantees for high-dimensional classification problems. It uses the probabilities of predicting the top two most-likely classes around an input point under a smoothing distribution to generate a certified radius for a classifier's prediction. However, most smoothing methods do not give us any information about the confidence with which the underlying classifier (e.g., deep neural network) makes a prediction. In this work, we propose a method to generate certified radii for the prediction confidence of the smoothed classifier. We consider two notions for quantifying confidence: average prediction score of a class and the margin by which the average prediction score of one class exceeds that of another. We modify the Neyman-Pearson lemma (a key theorem in randomized smoothing) to design a procedure for computing the certified radius where the confidence is guaranteed to stay above a certain threshold. Our experimental results on CIFAR-10 and ImageNet datasets show that using information about the distribution of the confidence scores allows us to achieve a significantly better certified radius than ignoring it. Thus, we demonstrate that extra information about the base classifier at the input point can help improve certified guarantees for the smoothed classifier. 
    more » « less
  2. Forward invariance is a long-studied property in control theory that is used to certify that a dynamical system stays within some pre-specified set of states for all time, and also admits robustness guarantees (e.g., the certificate holds under perturbations). We propose a general framework for training and provably certifying robust forward invariance in Neural ODEs. We apply this framework in two settings: certified adversarial robustness for image classification, and certified safety in continuous control. Notably, our method empirically produces superior adversarial robustness guarantees compared to prior work on certifiably robust Neural ODEs (including implicit-depth models). 
    more » « less
  3. null (Ed.)
    This paper introduces robustness verification for semantic segmentation neural networks (in short, semantic segmentation networks [SSNs]), building on and extending recent approaches for robustness verification of image classification neural networks. Despite recent progress in developing verification methods for specifications such as local adversarial robustness in deep neural networks (DNNs) in terms of scalability, precision, and applicability to different network architectures, layers, and activation functions, robustness verification of semantic segmentation has not yet been considered. We address this limitation by developing and applying new robustness analysis methods for several segmentation neural network architectures, specifically by addressing reachability analysis of up-sampling layers, such as transposed convolution and dilated convolution. We consider several definitions of robustness for segmentation, such as the percentage of pixels in the output that can be proven robust under different adversarial perturbations, and a robust variant of intersection-over-union (IoU), the typical performance evaluation measure for segmentation tasks. Our approach is based on a new relaxed reachability method, allowing users to select the percentage of a number of linear programming problems (LPs) to solve when constructing the reachable set, through a relaxation factor percentage. The approach is implemented within NNV, then applied and evaluated on segmentation datasets, such as a multi-digit variant of MNIST known as M2NIST. Thorough experiments show that by using transposed convolution for up-sampling and average-pooling for down-sampling, combined with minimizing the number of ReLU layers in the SSNs, we can obtain SSNs with not only high accuracy (IoU), but also that are more robust to adversarial attacks and amenable to verification. Additionally, using our new relaxed reachability method, we can significantly reduce the verification time for neural networks whose ReLU layers dominate the total analysis time, even in classification tasks. 
    more » « less
  4. null (Ed.)
    State-of-the-art NLP models can often be fooled by human-unaware transformations such as synonymous word substitution. For security reasons, it is of critical importance to develop models with certified robustness that can provably guarantee that the prediction is can not be altered by any possible synonymous word substitution. In this work, we propose a certified robust method based on a new randomized smoothing technique, which constructs a stochastic ensemble by applying random word substitutions on the input sentences, and leverage the statistical properties of the ensemble to provably certify the robustness. Our method is simple and structure-free in that it only requires the black-box queries of the model outputs, and hence can be applied to any pre-trained models (such as BERT) and any types of models (world-level or subword-level). Our method significantly outperforms recent state-of-the-art methods for certified robustness on both IMDB and Amazon text classification tasks. To the best of our knowledge, we are the first work to achieve certified robustness on large systems such as BERT with practically meaningful certified accuracy. 
    more » « less
  5. Implicit neural networks are a general class of learning models that replace the layers in traditional feedforward models with implicit algebraic equations. Compared to traditional learning models, implicit networks offer competitive performance and reduced memory consumption. However, they can remain brittle with respect to input adversarial perturbations. This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks; our framework blends together mixed monotone systems theory and contraction theory. First, given an implicit neural network, we introduce a related embedded network and show that, given an infinity-norm box constraint on the input, the embedded network provides an infinity-norm box overapproximation for the output of the original network. Second, using infinity-matrix measures, we propose sufficient conditions for well-posedness of both the original and embedded system and design an iterative algorithm to compute the infinity-norm box robustness margins for reachability and classification problems. Third, of independent value, we show that employing a suitable relative classifier variable in our analysis will lead to tighter bounds on the certified adversarial robustness in classification problems. Finally, we perform numerical simulations on a Non-Euclidean Monotone Operator Network (NEMON) trained on the MNIST dataset. In these simulations, we compare the accuracy and run time of our mixed monotone contractive approach with the existing robustness verification approaches in the literature for estimating the certified adversarial robustness. 
    more » « less