Creation of sub-epithelial voids within scarred vocal folds via ultrafast laser ablation may help in localization of injectable therapeutic biomaterials towards an improved treatment for vocal fold scarring. Several ultrafast laser surgery probes have been developed for precise ablation of surface tissues; however, these probes lack the tight beam focusing required for sub-surface ablation in highly scattering tissues such as vocal folds. Here, we present a miniaturized ultrafast laser surgery probe designed to perform sub-epithelial ablation in vocal folds. The requirement of high numerical aperture for sub-surface ablation, in addition to the small form factor and side-firing architecture required for clinical use, made for a challenging optical design. An Inhibited Coupling guiding Kagome hollow core photonic crystal fiber delivered micro-Joule level ultrashort pulses from a high repetition rate fiber laser towards a custom-built miniaturized objective, producing a 1/e2focal beam radius of 1.12 ± 0.10 μm and covering a 46 × 46 μm2scan area. The probe could deliver up to 3.8 μJ pulses to the tissue surface at 40% transmission efficiency through the entire system, providing significantly higher fluences at the focal plane than were required for sub-epithelial ablation. To assess surgical performance, we performed ablation studies on freshly excised porcine hemi-larynges and found that largemore »
We demonstrate 120-fold photoluminescence enhancement of VB-spin defects in hBN by coupling them to nanopatch antennas. Since the laser spot is 6.25 times larger than the antenna area, the actual enhancement is 750-fold.
- Award ID(s):
- 2015025
- Publication Date:
- NSF-PAR ID:
- 10348796
- Journal Name:
- CLEO: QELS_Fundamental Science 2022
- Page Range or eLocation-ID:
- FF3C.3
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract. Urbanization and deforestation have important impacts on atmosphericparticulate matter (PM) over Amazonia. This study presents observations andanalysis of PM1 concentration, composition, and opticalproperties in central Amazonia during the dry season, focusing on theanthropogenic impacts. The primary study site was located 70 km downwind ofManaus, a city of over 2 million people in Brazil, as part of theGoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol massspectrometer (AMS) provided data on PM1 composition, and aethalometermeasurements were used to derive the absorption coefficient babs,BrC ofbrown carbon (BrC) at 370 nm. Non-refractory PM1 mass concentrationsaveraged 12.2 µg m−3 at the primary study site, dominated byorganics (83 %), followed by sulfate (11 %). A decrease inbabs,BrC was observed as the mass concentration of nitrogen-containingorganic compounds decreased and the organic PM1 O:C ratio increased,suggesting atmospheric bleaching of the BrC components. The organic PM1was separated into six different classes by positive-matrix factorization(PMF), and the mass absorption efficiency Eabs associated with eachfactor was estimated through multivariate linear regression ofbabs,BrC on the factor loadings. The largest Eabs values wereassociated with urban (2.04±0.14 m2 g−1) and biomass-burning(0.82±0.04 to 1.50±0.07 m2 g−1) sources. Together, these sources contributed at least 80 % ofbabs,BrCmore »
-
Transcription factor (TF)–promoter pairs have been repurposed from native hosts to provide tools to measure intracellular biochemical production titer and dynamically control gene expression. Most often, native TF–promoter systems require rigorous screening to obtain desirable characteristics optimized for biotechnological applications. High-throughput techniques may provide a rational and less labor-intensive strategy to engineer user-defined TF–promoter pairs using fluorescence-activated cell sorting and deep sequencing methods (sort-seq). Based on the designed promoter library’s distribution characteristics, we elucidate sequence–function interactions between the TF and DNA. In this work, we use the sort-seq method to study the sequence–function relationship of a σ54-dependent, butanol-responsive TF–promoter pair, BmoR-PBMO derived from Thauera butanivorans, at the nucleotide level to improve biosensor characteristics, specifically an improved dynamic range. Activities of promoters from a mutagenized PBMO library were sorted based on gfp expression and subsequently deep sequenced to correlate site-specific sequences with changes in dynamic range. We identified site-specific mutations that increase the sensor output. Double mutant and a single mutant, CA(129,130)TC and G(205)A, in PBMO promoter increased dynamic ranges of 4-fold and 1.65-fold compared with the native system, respectively. In addition, sort-seq identified essential sites required for the proper function of the σ54-dependent promoter biosensor in the context of themore »
-
Abstract We explore changes in the adiabatic low-order g-mode pulsation periods of 0.526, 0.560, and 0.729
M ⊙carbon–oxygen white dwarf models with helium-dominated envelopes due to the presence, absence, and enhancement of22Ne in the interior. The observed g-mode pulsation periods of such white dwarfs are typically given to 6−7 significant figures of precision. Usually white dwarf models without22Ne are fit to the observed periods and other properties. The rms residuals to the ≃150−400 s low-order g-mode periods are typically in the range ofσ rms≲ 0.3 s, for a fit precision ofσ rms/P ≲ 0.3%. We find average relative period shifts of ΔP /P ≃ ±0.5% for the low-order dipole and quadrupole g-mode pulsations within the observed effective temperature window, with the range of ΔP /P depending on the specific g-mode, abundance of22Ne, effective temperature, and the mass of the white dwarf model. This finding suggests a systematic offset may be present in the fitting process of specific white dwarfs when22Ne is absent. As part of the fitting processes involves adjusting the composition profiles of a white dwarf model, our study on the impact of22Ne can provide new inferences on the derived interior mass fraction profiles. We encourage routinely including22Ne mass fraction profiles, informed by stellar evolution models, to futuremore » -
Increases in CO2concentration in plant leaves due to respiration in the dark and the continuing atmospheric [CO2] rise cause closing of stomatal pores, thus affecting plant–water relations globally. However, the underlying CO2/bicarbonate (CO2/HCO3−) sensing mechanisms remain unknown. [CO2] elevation in leaves triggers stomatal closure by anion efflux mediated via the SLAC1 anion channel localized in the plasma membrane of guard cells. Previous reconstitution analysis has suggested that intracellular bicarbonate ions might directly up-regulate SLAC1 channel activity. However, whether such a CO2/HCO3−regulation of SLAC1 is relevant for CO2control of stomatal movements in planta remains unknown. Here, we computationally probe for candidate bicarbonate-interacting sites within the SLAC1 anion channel via long-timescale Gaussian accelerated molecular dynamics (GaMD) simulations. Mutations of two putative bicarbonate-interacting residues, R256 and R321, impaired the enhancement of the SLAC1 anion channel activity by CO2/HCO3−in
Xenopus oocytes. Mutations of the neighboring charged amino acid K255 and residue R432 and the predicted gate residue F450 did not affect HCO3−regulation of SLAC1. Notably, gas-exchange experiments withslac1 -transformed plants expressing mutated SLAC1 proteins revealed that the SLAC1 residue R256 is required for CO2regulation of stomatal movements in planta, but not for abscisic acid (ABA)-induced stomatal closing. Patch clamp analyses of guard cells show that activation ofmore »