skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonlinear Data-Driven Control via State-Dependent Representations
Recently, there has been renewed interest in data-driven control, that is, the design of controllers directly from observed data. In the case of linear time-invariant (LTI) systems, several approaches have been proposed that lead to tractable optimization problems. On the other hand, the case of nonlinear dynamics is considerably less developed, with existing approaches limited to at most rational dynamics and requiring the solution to a computationally expensive Sum of Squares (SoS) optimization. Since SoS problems typically scale combinatorially with the size of the problem, these approaches are limited to relatively low order systems. In this paper, we propose an alternative, based on the use of state-dependent representations. This idea allows for synthesizing data-driven controllers by solving at each time step an on-line optimization problem whose complexity is comparable to the LTI case. Further, the proposed approach is not limited to rational dynamics. The main result of the paper shows that the feasibility of this on-line optimization problem guarantees that the proposed controller renders the origin a globally asymptotically stable equilibrium point of the closed-loop system. These results are illustrated with some simple examples. The paper concludes by briefly discussing the prospects for adding performance criteria.  more » « less
Award ID(s):
1808381 1646121 2038493
PAR ID:
10349422
Author(s) / Creator(s):
;
Date Published:
Journal Name:
60th IEEE Conf. Decision and Control
Page Range / eLocation ID:
5765 to 5770
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Achieving optimal steady-state performance in real-time is an increasingly necessary requirement of many critical infrastructure systems. In pursuit of this goal, this paper builds a systematic design framework of feedback controllers for Linear Time-Invariant (LTI) systems that continuously track the optimal solution of some predefined optimization problem. We logically divide the proposed solution into three components. The first component estimates the system state from the output measurements. The second component uses the estimated state and computes a drift direction based on an optimization algorithm. The third component calculates an input to the LTI system that aims to drive the system toward the optimal steady-state. We analyze the equilibrium characteristics of the closed-loop system and provide conditions for optimality and stability. Our analysis shows that the proposed solution guarantees optimal steady-state performance, even in the presence of constant disturbances. Furthermore, by leveraging recent results on the analysis of optimization algorithms using Integral Quadratic Constraints (IQCs), the proposed framework can translate input-output properties of our optimization component into sufficient conditions, based on linear matrix inequalities (LMIs), for global exponential asymptotic stability of the closed-loop system. We illustrate several resulting controller designs using a numerical example. 
    more » « less
  2. Online convex optimization (OCO) is a powerful tool for learning sequential data, making it ideal for high precision control applications where the disturbances are arbitrary and unknown in advance. However, the ability of OCO-based controllers to accurately learn the disturbance while maintaining closed-loop stability relies on having an accurate model of the plant. This paper studies the performance of OCO-based controllers for linear time-invariant (LTI) systems subject to disturbance and model uncertainty. The model uncertainty can cause the closed-loop to become unstable. We provide a sufficient condition for robust stability based on the small gain theorem. This condition is easily incorporated as an on-line constraint in the OCO controller. Finally, we verify via numerical simulations that imposing the robust stability condition on the OCO controller ensures closed-loop stability. 
    more » « less
  3. This paper addresses the end-to-end sample complexity bound for learning the H2 optimal controller (the Linear Quadratic Gaussian (LQG) problem) with unknown dynamics, for potentially unstable Linear Time Invariant (LTI) systems. The robust LQG synthesis procedure is performed by considering bounded additive model uncertainty on the coprime factors of the plant. The closed-loopi dentification of the nominal model of the true plant is performed by constructing a Hankel-like matrix from a single time-series of noisy finite length input-output data, using the ordinary least squares algorithm from Sarkar and Rakhlin (2019). Next, an H∞ bound on the estimated model error is provided and the robust controller is designed via convex optimization, much in the spirit of Mania et al. (2019) and Zheng et al. (2020b), while allowing for bounded additive uncertainty on the coprime factors of the model. Our conclusions are consistent with previous results on learning the LQG and LQR controllers. 
    more » « less
  4. This paper investigates a novel engineering problem, i.e., security-constrained multi-period operation of micro energy-water nexuses. This problem is computationally challenging because of its high nonlinearity, nonconvexity, and large dimension. We propose a two-stage iterative algorithm employing a hybrid physics and data-driven contingency filtering (CF) method and convexification to solve it. The convexified master problem is solved in the first stage by considering the base case operation and binding contingencies set (BCS). The second stage updates BCS using physics-based data-driven methods, which include dynamic and filtered data sets. This method is faster than existing CF methods because it relies on offline optimization problems and contains a limited number of online optimization problems. We validate effectiveness of the proposed method using two different case studies: the IEEE 13-bus power system with the EPANET 8-node water system and the IEEE 33-bus power system with the Otsfeld 13-node water system. 
    more » « less
  5. In this paper, we develop an SOS approach for design of observers for time-delay systems. The method is an extension of recently developed algorithms for control of infinite-dimensional systems. The observers we design are more general than the class of observers most commonly associated with time-delay systems in that they directly correct both the estimate of present state as well as the history of the state. The result is that the observer is itself a PDE. In this case the traditional notions of strong and weak observability do not apply and the resulting observer-based controllers can significantly outperform existing approaches. 
    more » « less