skip to main content

This content will become publicly available on December 14, 2022

Title: Nonlinear Data-Driven Control via State-Dependent Representations
Recently, there has been renewed interest in data-driven control, that is, the design of controllers directly from observed data. In the case of linear time-invariant (LTI) systems, several approaches have been proposed that lead to tractable optimization problems. On the other hand, the case of nonlinear dynamics is considerably less developed, with existing approaches limited to at most rational dynamics and requiring the solution to a computationally expensive Sum of Squares (SoS) optimization. Since SoS problems typically scale combinatorially with the size of the problem, these approaches are limited to relatively low order systems. In this paper, we propose an alternative, based on the use of state-dependent representations. This idea allows for synthesizing data-driven controllers by solving at each time step an on-line optimization problem whose complexity is comparable to the LTI case. Further, the proposed approach is not limited to rational dynamics. The main result of the paper shows that the feasibility of this on-line optimization problem guarantees that the proposed controller renders the origin a globally asymptotically stable equilibrium point of the closed-loop system. These results are illustrated with some simple examples. The paper concludes by briefly discussing the prospects for adding performance criteria.
Authors:
;
Award ID(s):
1808381 1646121 2038493
Publication Date:
NSF-PAR ID:
10349422
Journal Name:
60th IEEE Conf. Decision and Control
Page Range or eLocation-ID:
5765 to 5770
Sponsoring Org:
National Science Foundation
More Like this
  1. Achieving optimal steady-state performance in real-time is an increasingly necessary requirement of many critical infrastructure systems. In pursuit of this goal, this paper builds a systematic design framework of feedback controllers for Linear Time-Invariant (LTI) systems that continuously track the optimal solution of some predefined optimization problem. We logically divide the proposed solution into three components. The first component estimates the system state from the output measurements. The second component uses the estimated state and computes a drift direction based on an optimization algorithm. The third component calculates an input to the LTI system that aims to drive the system toward the optimal steady-state. We analyze the equilibrium characteristics of the closed-loop system and provide conditions for optimality and stability. Our analysis shows that the proposed solution guarantees optimal steady-state performance, even in the presence of constant disturbances. Furthermore, by leveraging recent results on the analysis of optimization algorithms using Integral Quadratic Constraints (IQCs), the proposed framework can translate input-output properties of our optimization component into sufficient conditions, based on linear matrix inequalities (LMIs), for global exponential asymptotic stability of the closed-loop system. We illustrate several resulting controller designs using a numerical example.
  2. This paper develops competitive bidding strategies for an online linear optimization problem with inventory management constraints in both cost minimization and profit maximization settings. In the minimization problem, a decision maker should satisfy its time-varying demand by either purchasing units of an asset from the market or producing them from a local inventory with limited capacity. In the maximization problem, a decision maker has a time-varying supply of an asset that may be sold to the market or stored in the inventory to be sold later. In both settings, the market price is unknown in each timeslot and the decision maker can submit a finite number of bids to buy/sell the asset. Once all bids have been submitted, the market price clears and the amount bought/sold is determined based on the clearing price and submitted bids. From this setup, the decision maker must minimize/maximize their cost/profit in the market, while also devising a bidding strategy in the face of an unknown clearing price. We propose DEMBID and SUPBID, two competitive bidding strategies for these online linear optimization problems with inventory management constraints for the minimization and maximization setting respectively. We then analyze the competitive ratios of the proposed algorithms andmore »show that the performance of our algorithms approaches the best possible competitive ratio as the maximum number of bids increases. As a case study, we use energy data traces from Akamai data centers, renewable outputs from NREL, and energy prices from NYISO to show the effectiveness of our bidding strategies in the context of energy storage management for a large energy customer participating in a real-time electricity market.« less
  3. We propose a predictive runtime monitoring approach for linear systems with stochastic disturbances. The goal of the monitor is to decide if there exists a possible sequence of control inputs over a given time horizon to ensure that a safety property is maintained with a sufficiently high probability. We derive an efficient algorithm for performing the predictive monitoring in real time, specifically for linear time invariant (LTI) systems driven by stochastic disturbances. The algorithm implicitly defines a control envelope set such that if the current control input to the system lies in this set, there exists a future strategy over a time horizon consisting of the next N steps to guarantee the safety property of interest. As a result, the proposed monitor is oblivious of the actual controller, and therefore, applicable even in the presence of complex control systems including highly adaptive controllers. Furthermore, we apply our proposed approach to monitor whether a UAV will respect a “geofence” defined by a geographical region over which the vehicle may operate. To achieve this, we construct a data-driven linear model of the UAVs dynamics, while carefully modeling the uncertainties due to wind, GPS errors and modeling errors as time-varying disturbances. Using realisticmore »data obtained from flight tests, we demonstrate the advantages and drawbacks of the predictive monitoring approach.« less
  4. Common reinforcement learning methods seek optimal controllers for unknown dynamical systems by searching in the "policy" space directly. A recent line of research, starting with [1], aims to provide theoretical guarantees for such direct policy-update methods by exploring their performance in classical control settings, such as the infinite horizon linear quadratic regulator (LQR) problem. A key property these analyses rely on is that the LQR cost function satisfies the "gradient dominance" property with respect to the policy parameters. Gradient dominance helps guarantee that the optimal controller can be found by running gradient-based algorithms on the LQR cost. The gradient dominance property has so far been verified on a case-by-case basis for several control problems including continuous/discrete time LQR, LQR with decentralized controller, H2/H∞ robust control.In this paper, we make a connection between this line of work and classical convex parameterizations based on linear matrix inequalities (LMIs). Using this, we propose a unified framework for showing that gradient dominance indeed holds for a broad class of control problems, such as continuous- and discrete-time LQR, minimizing the L2 gain, and problems using system-level parameterization. Our unified framework provides insights into the landscape of the cost function as a function of the policy,more »and enables extending convergence results for policy gradient descent to a much larger class of problems.« less
  5. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from themore »transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back« less