skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid Physics and Data-driven Contingency Filtering for Security Operation of Micro Energy-water Nexus
This paper investigates a novel engineering problem, i.e., security-constrained multi-period operation of micro energy-water nexuses. This problem is computationally challenging because of its high nonlinearity, nonconvexity, and large dimension. We propose a two-stage iterative algorithm employing a hybrid physics and data-driven contingency filtering (CF) method and convexification to solve it. The convexified master problem is solved in the first stage by considering the base case operation and binding contingencies set (BCS). The second stage updates BCS using physics-based data-driven methods, which include dynamic and filtered data sets. This method is faster than existing CF methods because it relies on offline optimization problems and contains a limited number of online optimization problems. We validate effectiveness of the proposed method using two different case studies: the IEEE 13-bus power system with the EPANET 8-node water system and the IEEE 33-bus power system with the Otsfeld 13-node water system.  more » « less
Award ID(s):
2124849
PAR ID:
10448863
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
CSEE Journal of Power and Energy Systems
ISSN:
2096-0042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The electric power distribution system (PDS) and the water distribution system (WDS) are coupled with each other through electricity-driven water facilities (EdWFs), such as pumps, water desalination plants, and wastewater treatment facilities. However, they are generally owned and operated by different utilities, and there does not exist an operator that possesses full information of both systems. As a result, centralized methods are not applicable for coordinating the operation of the two systems. This paper proposes a decentralized framework where the PDS and WDS operators solve their own operation problems, respectively, by sharing only limited information. Nevertheless, the boundary variables (i.e., the variables shared between two systems) are discontinuous due to their dependence on the on/off nature of EdWFs. Unfortunately, mature decentralized/distributed optimization algorithms like the alternating direction method of multipliers (ADMM) cannot guarantee convergence and optimality for a case like this. Therefore, this paper develops a novel algorithm that can guarantee convergence and optimality for the decentralized optimization of PDS and WDS based on a recently developed algorithm called the SD-GS-AL method. The SD-GS-AL method is a combination of the simplicial decomposition (SD), gauss–seidel (GS), and augmented Lagrangian (AL) methods, which can guarantee convergence and optimality for mixed-integer programs (MIPs) with continuous boundary variables. Nonetheless, the original SD-GS-AL algorithm does not work for the PDS-WDS coordination problem where the boundary variables are discontinuous. This paper modifies and improves the original SD-GS-AL algorithm by introducing update rules to discontinuous boundary variables (called the Auxiliary Variables Update step). The proposed mixed-integer boundary compatible (MIBC) SD-GS-AL algorithm has the following benefits: (1) it is capable of handling cases whose boundary variables are discontinuous with convergence and optimality guaranteed for mild assumptions, and (2) it only requires limited information exchange between PDS and WDS operators, which will help preserve the privacy of the two utilities and reduce the investment in building additional communication channels. Simulations on two coupled PDS and WDS test cases (Case 1: IEEE-13 node PDS and 11-node WDS, and Case 2: IEEE-37 node PDS and 36-node WDS) show that the proposed MIBC algorithm converges to the optimal solutions while the original SD-GS-AL does not converge for both test cases. The ADMM does not converge for the first test case while it converges to a sub-optimal solution, 63 % more than the optimal solution for the second test case. 
    more » « less
  2. The widespread deployment of smart heterogeneous technologies and the growing complexity in our modern society calls for effective coordination of the interdependent lifeline networks. In particular, operation coordination of electric power and water infrastructures is urgently needed as the water system is one of the most energy-intensive networks, an interruption in which may quickly evolve into a dramatic societal concern. The closely-intertwined ecosystem of water and power infrastructures is commonly known as water-energy nexus. This paper develops a novel analytic for uncertainty-aware day-ahead operation optimization of the interconnected power and water systems (PaWS). Joint probabilistic constraint (JPC) programming is employed to capture the uncertainties in wind resources and water demand forecasts. The proposed integrated stochastic model is presented as a non-linear non-convex optimization problem, where the non-linear hydraulic constraints in the water network are linearized using piece-wise linearization technique, and the non-convexity is efficiently tackled with a Boolean solution methodology to convert the proposed model with JPCs to a tractable mixed-integer linear programming (MILP) formulation that can be quickly solved to optimality. The suggested framework is applied to a 15-node commercial-scale water network jointly operated with a power transmission system using a modified IEEE 57-bus test system. The numerical results demonstrate the of the proposed stochastic framework, resulting in cost reduction (13% on average when compared to the traditional setting) and energy saving of the integrated model under different realizations of uncertain renewable energy sources (RESs) and water demand scenarios. Additionally, the scalability of the proposed model is tested on a modified IEEE 118-bus test system connected to five water networks. 
    more » « less
  3. null (Ed.)
    Contingency Constrained Optimal Power Flow (CCOPF) differs from traditional Optimal Power Flow (OPF) because its generation dispatch is planned to work with state variables between constraint limits, considering a specific contingency. When it is not desired to have changes in the power dispatch after the contingency occurs, the CCOPF is studied with a preventive perspective, whereas when the contingency occurs and the power dispatch needs to change to operate the system between limits in the post-contingency state, the problem is studied with a corrective perspective. As current power system software tools mainly focus on the traditional OPF problem, having the means to solve CCOPF will benefit power systems planning and operation. This paper presents a Quadratically Constrained Quadratic Programming (QCQP) formulation built within the matpower environment as a solution strategy to the preventive CCOPF. Moreover, an extended OPF model that forces the network to meet all constraints under contingency is proposed as a strategy to find the power dispatch solution for the corrective CCOPF. Validation is made on the IEEE 14-bus test system including photovoltaic generation in one simulation case. It was found that in the QCQP formulation, the power dispatch calculated barely differs in both pre- and post-contingency scenarios while in the OPF extended power network, node voltage values in both pre- and post-contingency scenarios are equal in spite of having different power dispatch for each scenario. This suggests that both the QCQP and the extended OPF formulations proposed, could be implemented in power system software tools in order to solve CCOPF problems from a preventive or corrective perspective. 
    more » « less
  4. Graph signal processing (GSP) has emerged as a powerful tool for practical network applications, including power system monitoring. Recent research has focused on developing GSP-based methods for state estimation, attack detection, and topology identification using the representation of the power system voltages as smooth graph signals. Within this framework, efficient methods have been developed for detecting false data injection (FDI) attacks, which until now were perceived as nonsmooth with respect to the graph Laplacian matrix. Consequently, these methods may not be effective against smooth FDI attacks. In this paper, we propose a graph FDI (GFDI) attack that minimizes the Laplacian-based graph total variation (TV) under practical constraints. We present the GFDI attack as the solution for a non-convex constrained optimization problem. The solution to the GFDI attack problem is obtained through approximating it using â„“1 relaxation. A series of quadratic programming problems that are classified as convex optimization problems are solved to obtain the final solution. We then propose a protection scheme that identifies the minimal set of measurements necessary to constrain the GFDI output to a high graph TV, thereby enabling its detection by existing GSP-based detectors. Our numerical simulations on the IEEE-57 and IEEE-118 bus test cases reveal the potential threat posed by well-designed GSP-based FDI attacks. Moreover, we demonstrate that integrating the proposed protection design with GSP-based detection can lead to significant hardware cost savings compared to previous designs of protection methods against FDI attacks. 
    more » « less
  5. Abstract Buildings use a large amount of energy in the United States. It is important to optimally manage and coordinate the resources across building and power distribution networks to improve overall efficiency. Optimizing the power grid with discrete variables was very challenging for traditional computers and algorithms, as it is an NP-hard problem. In this study, we developed a new optimization solution based on quantum computing for BTG integration. We first used MPC for building loads connected with a commercial distribution grid for cost reduction. Then we used discretization and Benders Decomposition methods to reformulate the problem and decompose the continuous and discrete variables, respectively. We used D-Wave quantum computer to solve dual problems and used conventional algorithm for primal problems. We applied the proposed method to an IEEE 9-bus network with 3 commercial buildings and over 300 residential buildings to evaluate the feasibility and effectiveness. Compared with traditional optimization methods, we obtained similar solutions with some fluctuations and improved computational speed from hours to seconds. The time of quantum computing was greatly reduced to less than 1% of traditional optimization algorithm and software such as MATLAB. Quantum computing has proved the potential to solve large-scale discrete optimization problems for urban energy systems. 
    more » « less