skip to main content

Title: Black Hole to Photosphere: 3D GRMHD Simulations of Collapsars Reveal Wobbling and Hybrid Composition Jets
Abstract Long-duration γ -ray bursts (GRBs) accompany the collapse of massive stars and carry information about the central engine. However, no 3D models have been able to follow these jets from their birth via black hole (BH) to the photosphere. We present the first such 3D general-relativity magnetohydrodynamic simulations, which span over six orders of magnitude in space and time. The collapsing stellar envelope forms an accretion disk, which drags inwardly the magnetic flux that accumulates around the BH, becomes dynamically important, and launches bipolar jets. The jets reach the photosphere at ∼10 12 cm with an opening angle θ j ∼ 6° and a Lorentz factor Γ j ≲ 30, unbinding ≳90% of the star. We find that (i) the disk–jet system spontaneously develops misalignment relative to the BH rotational axis. As a result, the jet wobbles with an angle θ t ∼ 12°, which can naturally explain quiescent times in GRB lightcurves. The effective opening angle for detection θ j + θ t suggests that the intrinsic GRB rate is lower by an order of magnitude than standard estimates. This suggests that successful GRBs are rarer than currently thought and emerge in only ∼0.1% of supernovae Ib/c, implying that jets are either not launched or choked inside most supernova Ib/c progenitors. (ii) The magnetic energy in the jet decreases due to mixing with the star, resulting in jets with a hybrid composition of magnetic and thermal components at the photosphere, where ∼10% of the gas maintains magnetization σ ≳ 0.1. This indicates that both a photospheric component and reconnection may play a role in the prompt emission.  more » « less
Award ID(s):
2107802 2107839 1815304 2031997
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Collapsing stars constitute the main black hole (BH) formation channel, and are occasionally associated with the launch of relativistic jets that powerγ-ray bursts (GRBs). Thus, collapsars offer an opportunity to infer the natal (before spin-up/down by accretion) BH spin directly from observations. We show that once the BH saturates with a large-scale magnetic flux, the jet power is dictated by the BH spin and mass accretion rate. Core-collapse simulations by Halevi et al. and GRB observations favor stellar density profiles that yield an accretion rate ofṁ102Ms1, weakly dependent on time. This leaves the spin as the main factor that governs the jet power. By comparing the jet power to characteristic GRB luminosities, we find that the majority of BHs associated with jets are likely born slowly spinning with a dimensionless spin ofa≃ 0.2, ora≃ 0.5 for wobbling jets, with the main uncertainty originating in the unknownγ-ray radiative efficiency. This result could be applied to the entire core-collapse BH population, unless an anticorrelation between the stellar magnetic field and angular momentum is present. In a companion paper, Jacquemin-Ide et al., we show that regardless of the natal spin, the extraction of BH rotational energy leads to spin-down toa≲ 0.2, consistent with gravitational-wave observations. We verify our results by performing the first 3D general-relativistic magnetohydrodynamic simulations of collapsar jets with characteristic GRB energies, powered by slowly spinning BHs. We find that jets of typical GRB power struggle to escape from the star, providing the first numerical indication that many jets fail to generate a GRB.

    more » « less
  2. ABSTRACT Recently gamma-ray bursts (GRBs) have been detected at very-high-energy (VHE) gamma-rays by imaging atmospheric Cherenkov telescopes, and a two-component jet model has often been invoked to explain multiwavelength data. In this work, multiwavelength afterglow emission from an extremely bright GRB, GRB 221009A, is examined. The isotropic-equivalent gamma-ray energy of this event is among the largest, which suggests that similarly to previous VHE GRBs, the jet opening angle is so small that the collimation-corrected gamma-ray energy is nominal. Afterglow emission from such a narrow jet decays too rapidly, especially if the jet propagates into uniform circumburst material. In the two-component jet model, another wide jet component with a smaller Lorentz factor dominates late-time afterglow emission, and we show that multiwavelength data of GRB 221009A can be explained by narrow and wide jets with opening angles similar to those employed for other VHE GRBs. We also discuss how model degeneracies can be disentangled with observations. 
    more » « less
  3. Abstract

    We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger tor≳ 1011cm. The disk that forms after a merger of mass ratioq= 2 ejects massive disk winds (3–5 × 10−2M). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asLjt−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ0> 100 retain significant magnetization (σ≫ 1) atr> 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper.

    more » « less

    We present a suite of the first 3D GRMHD collapsar simulations, which extend from the self-consistent jet launching by an accreting Kerr black hole (BH) to the breakout from the star. We identify three types of outflows, depending on the angular momentum, l, of the collapsing material and the magnetic field, B, on the BH horizon: (i) subrelativistic outflow (low l and high B), (ii) stationary accretion shock instability (SASI; high l and low B), (iii) relativistic jets (high l and high B). In the absence of jets, free-fall of the stellar envelope provides a good estimate for the BH accretion rate. Jets can substantially suppress the accretion rate, and their duration can be limited by the magnetization profile in the star. We find that progenitors with large (steep) inner density power-law indices (≳ 2), face extreme challenges as gamma-ray burst (GRB) progenitors due to excessive luminosity, global time evolution in the light curve throughout the burst and short breakout times, inconsistent with observations. Our results suggest that the wide variety of observed explosion appearances (supernova/supernova + GRB/low-luminosity GRBs) and the characteristics of the emitting relativistic outflows (luminosity and duration) can be naturally explained by the differences in the progenitor structure. Our simulations reveal several important jet features: (i) strong magnetic dissipation inside the star, resulting in weakly magnetized jets by breakout that may have significant photospheric emission and (ii) spontaneous emergence of tilted accretion disc-jet flows, even in the absence of any tilt in the progenitor.

    more » « less
  5. Abstract

    The spin of a newly formed black hole (BH) at the center of a massive star evolves from its natal value due to two competing processes: accretion of gas angular momentum that increases the spin and extraction of BH angular momentum by outflows that decreases the spin. Ultimately, the final, equilibrium spin is set by a balance between both processes. In order for the BH to launch relativistic jets and power aγ-ray burst (GRB), the BH magnetic field needs to be dynamically important. Thus, we consider the case of a magnetically arrested disk (MAD) driving the spin evolution of the BH. By applying the semianalytic MAD BH spin evolution model of Lowell et al. to collapsars, we show that if the BH accretes ∼20% of its initial mass, its dimensionless spin inevitably reaches small values,a≲ 0.2. For such spins, and for mass accretion rates inferred from collapsar simulations, we show that our semianalytic model reproduces the energetics of typical GRB jets,Ljet∼ 1050erg s−1. We show that our semianalytic model reproduces the nearly constant power of typical GRB jets. If the MAD onset is delayed, this allows powerful jets at the high end of the GRB luminosity distribution,Ljet∼ 1052erg s−1, but the final spin remains low,a≲ 0.3. These results are consistent with the low spins inferred from gravitational wave detections of binary BH mergers. In a companion paper by Gottlieb et al., we use GRB observations to constrain the natal BH spin to bea≃ 0.2.

    more » « less