Multisection continuum arms are bio-inspired manipulators that combine compliance, payload, dexterity, and safety to serve as co-robots in human-robot collaborative domains. Their hyper redundancy and complex kinematics, however, pose many challenges when performing path planning, especially in dynamic environments. In this paper, we present a W-Space based Rapidly Exploring Random Trees * path planner for multisection continuum arm robots in dynamic environments. The proposed planner improves the existing state-of-art planners in terms of computation time and the success rate, while removing the need for offline computation. On average, the computation time of our approach is below 2 seconds, and its average success rate is around 70 %. The computation time of the proposed planner significantly improves that of the state-of-the-art planner by roughly a factor of 20, making the former suitable for real-time applications. Moreover, for application domains where the obstacle motion is not very predictable (e.g., human obstacles), the proposed planner significantly improves the success rate of state-of-the-art planners by nearly 50 %. Lastly, we demonstrate the feasibility of several generated trajectories by replicating the motion on a physical prototype arm. 
                        more » 
                        « less   
                    
                            
                            Bench-MR: A Motion Planning Benchmark for Wheeled Mobile Robots
                        
                    
    
            Planning smooth and energy-efficient motions for wheeled mobile robots is a central task for applications ranging from autonomous driving to service and intralogistic robotics. Over the past decades, a wide variety of motion planners, steer functions and path-improvement techniques have been proposed for such non-holonomic systems. With the objective of comparing this large assortment of state-of-the-art motion-planning techniques, we introduce a novel open-source motion-planning benchmark for wheeled mobile robots, whose scenarios resemble real-world applications (such as navigating warehouses, moving in cluttered cities or parking), and propose metrics for planning efficiency and path quality. Our benchmark is easy to use and extend, and thus allows practitioners and researchers to evaluate new motion-planning algorithms, scenarios and metrics easily. We use our benchmark to highlight the strengths and weaknesses of several common state-of-the-art motion planners and provide recommendations on when they should be used. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1724392
- PAR ID:
- 10350381
- Date Published:
- Journal Name:
- IEEE robotics automation letters
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2377-3766
- Page Range / eLocation ID:
- 4536-4543
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective.more » « less
- 
            We present a novel method for performing integrated task and motion planning (TMP) by adapting any off-the-shelf sampling-based motion planning algorithm to simultaneously solve for a symbolically and geometrically feasible plan using a single motion planner invocation. The core insight of our technique is an embedding of symbolic state into continuous space, coupled with a novel means of automatically deriving a function guiding a planner to regions of continuous space where symbolic actions can be executed. Our technique makes few assumptions and offers a great degree of flexibility and generality compared to state of the art planners. We describe our technique and offer a proof of probabilistic completeness along with empirical evaluation of our technique on manipulation benchmark problems.more » « less
- 
            null (Ed.)In this paper, we present a planning and control framework for dynamic, whole-body motions for dynamically stable shape-accelerating mobile manipulators. This class of robots are inherently unstable and require careful coordination between the upper and lower body to maintain balance while performing manipulation tasks. Solutions to this problem either use a complex, full-body nonlinear dynamic model of the robot or a highly simplified model of the robot. Here we explore the use of centroidal dynamics which has recently become a popular approach for designing balancing controllers for humanoid robots. We describe a framework where we first solve a trajectory optimization problem offline. We define balancing for a ballbot in terms of the centroidal momentum instead of other approaches like ZMP or angular velocity that are more commonly used. The generated motion is tracked using a PD- PID cascading balancing controller for the body and torque controller for the arms. We demonstrate that this framework is capable of generating dynamic motion plans and control inputs with examples on the CMU ballbot, a single-spherical-wheeled balancing mobile manipulator.more » « less
- 
            Snake robotics is an important research topic with a wide range of applications, including inspection in confined spaces, search-and-rescue, and disaster response. Snake robots are well-suited to these applications because of their versatility and adaptability to unstructured and constrained environments. In this paper, we introduce a soft pneumatic robotic snake that can imitate the capabilities of biological snakes, its soft body can provide flexibility and adaptability to the environment. This paper combines soft mobile robot modeling, proprioceptive feedback control, and motion planning to pave the way for functional soft robotic snake autonomy. We propose a pressure-operated soft robotic snake with a high degree of modularity that makes use of customized embedded flexible curvature sensing. On this platform, we introduce the use of iterative learning control using feedback from the on-board curvature sensors to enable the snake to automatically correct its gait for superior locomotion. We also present a motion planning and trajectory tracking algorithm using an adaptive bounding box, which allows for efficient motion planning that still takes into account the kinematic state of the soft robotic snake. We test this algorithm experimentally, and demonstrate its performance in obstacle avoidance scenarios.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    