skip to main content


Title: Replay in Deep Learning: Current Approaches and Missing Biological Elements
Abstract Replay is the reactivation of one or more neural patterns that are similar to the activation patterns experienced during past waking experiences. Replay was first observed in biological neural networks during sleep, and it is now thought to play a critical role in memory formation, retrieval, and consolidation. Replay-like mechanisms have been incorporated in deep artificial neural networks that learn over time to avoid catastrophic forgetting of previous knowledge. Replay algorithms have been successfully used in a wide range of deep learning methods within supervised, unsupervised, and reinforcement learning paradigms. In this letter, we provide the first comprehensive comparison between replay in the mammalian brain and replay in artificial neural networks. We identify multiple aspects of biological replay that are missing in deep learning systems and hypothesize how they could be used to improve artificial neural networks.  more » « less
Award ID(s):
1909696 1724405
NSF-PAR ID:
10350729
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Neural Computation
ISSN:
0899-7667
Page Range / eLocation ID:
1 to 44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Objective.A major challenge in designing closed-loop brain-computer interfaces is finding optimal stimulation patterns as a function of ongoing neural activity for different subjects and different objectives. Traditional approaches, such as those currently used for deep brain stimulation, have largely followed a manual trial-and-error strategy to search for effective open-loop stimulation parameters, a strategy that is inefficient and does not generalize to closed-loop activity-dependent stimulation.Approach.To achieve goal-directed closed-loop neurostimulation, we propose the use of brain co-processors, devices which exploit artificial intelligence to shape neural activity and bridge injured neural circuits for targeted repair and restoration of function. Here we investigate a specific type of co-processor called a ‘neural co-processor’ which uses artificial neural networks and deep learning to learn optimal closed-loop stimulation policies. The co-processor adapts the stimulation policy as the biological circuit itself adapts to the stimulation, achieving a form of brain-device co-adaptation. Here we use simulations to lay the groundwork for futurein vivotests of neural co-processors. We leverage a previously published cortical model of grasping, to which we applied various forms of simulated lesions. We used our simulations to develop the critical learning algorithms and study adaptations to non-stationarity in preparation for futurein vivotests.Main results.Our simulations show the ability of a neural co-processor to learn a stimulation policy using a supervised learning approach, and to adapt that policy as the underlying brain and sensors change. Our co-processor successfully co-adapted with the simulated brain to accomplish the reach-and-grasp task after a variety of lesions were applied, achieving recovery towards healthy function in the range 75%–90%.Significance.Our results provide the first proof-of-concept demonstration, using computer simulations, of a neural co-processor for adaptive activity-dependent closed-loop neurostimulation for optimizing a rehabilitation goal after injury. While a significant gap remains between simulations andin vivoapplications, our results provide insights on how such co-processors may eventually be developed for learning complex adaptive stimulation policies for a variety of neural rehabilitation and neuroprosthetic applications.

     
    more » « less
  2. Neurons in real brains are complex computational units, capable of input-specific damping, inter-trial memory, and context-dependent signal processing. Artificial neurons, on the other hand, are usually implemented as simple weighted sums. Here we explore if increasing the computational power of individual neurons can yield more powerful neural networks. Specifically, we introduce Deep Artificial Neurons (DANs)—small neural networks with shared, learnable parameters embedded within a larger network. DANs act as filters between nodes in the net-work; namely, they receive vectorized inputs from multiple neurons in the previous layer, condense these signals into a single output, then send this processed signal to the neurons in the subsequent layer. We demonstrate that it is possible to meta-learn shared parameters for the various DANS in the network in order to facilitate continual and transfer learning during deployment. Specifically, we present experimental results on (1) incremental non-linear regression tasks and (2)unsupervised class-incremental image reconstruction that show that DANs allow a single network to update its synapses (i.e., regular weights) over time with minimal forgetting. Notably, our approach uses standard backpropagation, does not require experience replay, and does need separate wake/sleep phases. 
    more » « less
  3. The past decade has witnessed the great success of deep neural networks in various domains. However, deep neural networks are very resource-intensive in terms of energy consumption, data requirements, and high computational costs. With the recent increasing need for the autonomy of machines in the real world, e.g., self-driving vehicles, drones, and collaborative robots, exploitation of deep neural networks in those applications has been actively investigated. In those applications, energy and computational efficiencies are especially important because of the need for real-time responses and the limited energy supply. A promising solution to these previously infeasible applications has recently been given by biologically plausible spiking neural networks. Spiking neural networks aim to bridge the gap between neuroscience and machine learning, using biologically realistic models of neurons to carry out the computation. Due to their functional similarity to the biological neural network, spiking neural networks can embrace the sparsity found in biology and are highly compatible with temporal code. Our contributions in this work are: (i) we give a comprehensive review of theories of biological neurons; (ii) we present various existing spike-based neuron models, which have been studied in neuroscience; (iii) we detail synapse models; (iv) we provide a review of artificial neural networks; (v) we provide detailed guidance on how to train spike-based neuron models; (vi) we revise available spike-based neuron frameworks that have been developed to support implementing spiking neural networks; (vii) finally, we cover existing spiking neural network applications in computer vision and robotics domains. The paper concludes with discussions of future perspectives.

     
    more » « less
  4. null (Ed.)
    The brain modifies its synaptic strengths during learning in order to better adapt to its environment. However, the underlying plasticity rules that govern learning are unknown. Many proposals have been suggested, including Hebbian mechanisms, explicit error backpropagation, and a variety of alternatives. It is an open question as to what specific experimental measurements would need to be made to determine whether any given learning rule is operative in a real biological system. In this work, we take a "virtual experimental" approach to this problem. Simulating idealized neuroscience experiments with artificial neural networks, we generate a large-scale dataset of learning trajectories of aggregate statistics measured in a variety of neural network architectures, loss functions, learning rule hyperparameters, and parameter initializations. We then take a discriminative approach, training linear and simple non-linear classifiers to identify learning rules from features based on these observables. We show that different classes of learning rules can be separated solely on the basis of aggregate statistics of the weights, activations, or instantaneous layer-wise activity changes, and that these results generalize to limited access to the trajectory and held-out architectures and learning curricula. We identify the statistics of each observable that are most relevant for rule identification, finding that statistics from network activities across training are more robust to unit undersampling and measurement noise than those obtained from the synaptic strengths. Our results suggest that activation patterns, available from electrophysiological recordings of post-synaptic activities on the order of several hundred units, frequently measured at wider intervals over the course of learning, may provide a good basis on which to identify learning rules. 
    more » « less
  5. The state-of-the-art in machine learning has been achieved primarily by deep learning artificial neural networks. These networks are powerful but biologically implausible and energy intensive. In parallel, a new paradigm of neural network is being researched that can alleviate some of the computational and energy issues. These networks, spiking neural networks (SNNs), have transformative potential if the community is able to bridge the gap between deep learning and SNNs. However, SNNs are notoriously difficult to train and lack precision in their communication. In an effort to overcome these limitations and retain the benefits of the learning process in deep learning, we investigate novel ways to translate between them. We construct several network designs with varying degrees of biological plausibility. We then test our designs on an image classification task and demonstrate our designs allow for a customized tradeoff between biological plausibility, power efficiency, inference time, and accuracy. 
    more » « less