We present an incremental scalable motion planning algorithm for finding maximally informative trajectories for decentralized mobile robots. These robots are deployed to observe an unknown spatial field, where the informativeness of observations is specified as a density function. Existing works that are typically restricted to discrete domains and synchronous planning often scale poorly depending on the size of the problem. Our goal is to design a distributed control law in continuous domains and an asynchronous communication strategy to guide a team of cooperative robots to visit the most informative locations within a limited mission duration. Our proposed Asynchronous Information Gathering with Bayesian Optimization (AsyncIGBO) algorithm extends ideas from asynchronous Bayesian Optimization (BO) to efficiently sample from a density function. It then combines them with decentralized reactive motion planning techniques to achieve efficient multi-robot information gathering activities. We provide a theoretical justification for our algorithm by deriving an asymptotic no-regret analysis with respect to a known spatial field. Our proposed algorithm is extensively validated through simulation and real-world experiment results with multiple robots.
more »
« less
Refuel Scheduling for Multirobot Charging-on-Demand
In this paper, we consider the refuel scheduling problem for a team of ground robots deployed in "aislelike" environments wherein the robots are constrained to move along rows. In order to maintain a minimum service rate or throughput for the ground robots, we investigate the problem of scheduling a team of mobile charging stations deployed to replace the batteries on-board the ground robots without any interruption in their task. We propose two scheduling schemes for the mobile chargers to serve the ground robots for long-term service, and derive the parameters associated with the system required for persistent uninterrupted operation.
more »
« less
- Award ID(s):
- 1816343
- PAR ID:
- 10351068
- Date Published:
- Journal Name:
- International Conference on Intelligent Robots and Systems
- Page Range / eLocation ID:
- 5825 to 5830
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Contemporary approaches to perception, planning, estimation, and control have allowed robots to operate robustly as our remote surrogates in uncertain, unstructured environments. This progress now creates an opportunity for robots to operate not only in isolation, but also with and alongside humans in our complex environments. Realizing this opportunity requires an efficient and flexible medium through which humans can communicate with collaborative robots. Natural language provides one such medium, and through significant progress in statistical methods for natural-language understanding, robots are now able to interpret a diverse array of free-form navigation, manipulation, and mobile-manipulation commands. However, most contemporary approaches require a detailed, prior spatial-semantic map of the robot’s environment that models the space of possible referents of an utterance. Consequently, these methods fail when robots are deployed in new, previously unknown, or partially-observed environments, particularly when mental models of the environment differ between the human operator and the robot. This paper provides a comprehensive description of a novel learning framework that allows field and service robots to interpret and correctly execute natural-language instructions in a priori unknown, unstructured environments. Integral to our approach is its use of language as a “sensor”—inferring spatial, topological, and semantic information implicit in natural-language utterances and then exploiting this information to learn a distribution over a latent environment model. We incorporate this distribution in a probabilistic, language grounding model and infer a distribution over a symbolic representation of the robot’s action space, consistent with the utterance. We use imitation learning to identify a belief-space policy that reasons over the environment and behavior distributions. We evaluate our framework through a variety of different navigation and mobile-manipulation experiments involving an unmanned ground vehicle, a robotic wheelchair, and a mobile manipulator, demonstrating that the algorithm can follow natural-language instructions without prior knowledge of the environment.more » « less
-
Accurately detecting, localizing, and tracking an unknown and time-varying number of dynamic targets using a team of mobile robots is a challenging problem that requires robots to reason about the uncertainties in their collected measurements. The problem is made more challenging when robots are uncertain about their own states, as this makes it difficult to both collectively localize targets and avoid collisions with one another. In this paper, we introduce the convex uncertain Voronoi (CUV) diagram, a generalization of the standard Voronoi diagram that accounts for the uncertain pose of each individual robot. We then use the CUV diagram to develop distributed multi-target tracking and coverage control algorithms that enable teams of mobile robots to account for bounded uncertainty in the location of each robot. Our algorithms are capable of safely driving mobile robots towards areas of high information distribution while maintaining coverage of the whole area of interest. We demonstrate the efficacy of these algorithms via a series of simulated and hardware tests, and compare the results to our previous work which assumes perfect localization.more » « less
-
This article proposes the application of a distributed containment control algorithm to a team of mobile robots. This paper builds on the containment controller developed by Yuan et al. (2019) for generic linear multi-agent system and tested in simulation only. In this article, we particularize the controller for the case of multiple mobile robots by including it into a two-layer control scheme. The high-level controller computes a desired position for the mobile robots, that is then used as reference trajectory for the low-level controller. The resulting control system is implemented as a fully distributed system on a team of mobile robots and validated in simulations and experiments.more » « less
-
Despite the inherent need for enhancing human-robot interaction (HRI) by non-visually communicating robotic movements and intentions, the application of sonification (the translation of data into audible information) within the field of robotics remains underexplored. This paper investigates the problem of designing sonification algorithms that translate the motion of teams of industrial mobile robots to non-speech sounds. Our proposed solution leverages the wave space sonification (WSS) framework and utilizes localized wave fields with specific orientations within the system configuration space. This WSS-based algorithm generates sounds from the motion data of mobile robots so that the resulting audio exhibits a chosen timbre when the robots pass near designated configurations or move along desired directions. To demonstrate its versatility, the WSS-based sonification algorithm is applied to a team of OMRON LD series autonomous mobile robots, sonifying their motion patterns with pure tonal sounds.more » « less
An official website of the United States government

