skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global hypersurfaces of section in the spatial restricted three-body problem
We propose a contact-topological approach to the spatial circular restricted three-body problem, for energies below and slightly above the first critical energy value. We prove the existence of a circle family of global hypersurfaces of section for the regularized dynamics. Below the first critical value, these hypersurfaces are diffeomorphic to the unit disk cotangent bundle of the 2-sphere, and they carry symplectic forms on their interior, which are each deformation equivalent to the standard symplectic form. The boundary of the global hypersurface of section is an invariant set for the regularized dynamics that is equal to a level set of the Hamiltonian describing the regularized planar problem. The first return map is Hamiltonian, and restricts to the boundary as the time-1 map of a positive reparametrization of the Reeb flow in the planar problem. This construction holds for any choice of mass ratio, and is therefore non-perturbative. We illustrate the technique in the completely integrable case of the rotating Kepler problem, where the return map can be studied explicitly.  more » « less
Award ID(s):
1926686
PAR ID:
10351443
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nonlinearity
Volume:
35
Issue:
6
ISSN:
2573-1793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce the map of dynamics of quantum Bose gases into dynamics of quasifree states, which we call the “nonlinear quasifree approximation”. We use this map to derive the time-dependent Hartree–Fock–Bogoliubov (HFB) equations describing the dynamics of quantum fluctuations around a Bose–Einstein condensate. We prove global well-posedness of the HFB equations for pair potentials satisfying suitable regularity conditions, and we establish important conservation laws. We show that the space of solutions of the HFB equations has a symplectic structure reminiscent of a Hamiltonian system. This is then used to relate the HFB equations to the HFB eigenvalue equations discussed in the physics literature. We also construct Gibbs equilibrium states at positive temperature associated with the HFB equations, and we establish criteria for the appearance of Bose–Einstein condensation. 
    more » « less
  2. In this paper we continue investigating connections between Floer theory and dynamics of Hamiltonian systems, focusing on the barcode entropy of Reeb flows. Barcode entropy is the exponential growth rate of the number of not-too-short bars in the Floer or symplectic homology persistence module. The key novel result is that the barcode entropy is bounded from below by the topological entropy of any hyperbolic invariant set. This, combined with the fact that the topological entropy bounds the barcode entropy from above, established by Fender, Lee and Sohn, implies that in dimension three the two types of entropy agree. The main new ingredient of the proof is a variant of the Crossing Energy Theorem for Reeb flows. 
    more » « less
  3. We introduce a class of Liouville manifolds with boundary which we call Liouville sectors. We define the wrapped Fukaya category, symplectic cohomology, and the open-closed map for Liouville sectors, and we show that these invariants are covariantly functorial with respect to inclusions of Liouville sectors. From this foundational setup, a local-to-global principle for Abouzaid’s generation criterion follows. 
    more » « less
  4. Out-of-time-ordered correlators (OTOCs) have been extensively studied in recent years as a diagnostic of quantum information scrambling. In this paper, we study quantum information-theoretic aspects of the regularized finite-temperature OTOC. We introduce analytical results for the bipartite regularized OTOC (BROTOC): the regularized OTOC averaged over random unitaries supported over a bipartition. We show that the BROTOC has several interesting properties, for example, it quantifies the purity of the associated thermofield double state and the operator purity of the analytically continued time-evolution operator. At infinite-temperature, it reduces to one minus the operator entanglement of the time-evolution operator. In the zero-temperature limit and for nondegenerate Hamiltonians, the BROTOC probes the groundstate entanglement. By computing long-time averages, we show that the equilibration value of the BROTOC is intimately related to eigenstate entanglement. Finally, we numerically study the equilibration value of the BROTOC for various physically relevant Hamiltonian models and comment on its ability to distinguish integrable and chaotic dynamics. 
    more » « less
  5. Incorporating prior knowledge of physics laws and structural properties of dynamical systems into the design of deep learning architectures has proven to be a powerful technique for improving their computational efficiency and generalization capacity. Learning accurate models of robot dynamics is critical for safe and stable control. Autonomous mobile robots, including wheeled, aerial, and underwater vehicles, can be modeled as controlled Lagrangian or Hamiltonian rigid-body systems evolving on matrix Lie groups. In this paper, we introduce a new structure-preserving deep learning architecture, the Lie group Forced Variational Integrator Network (LieFVIN), capable of learning controlled Lagrangian or Hamiltonian dynamics on Lie groups, either from position-velocity or position-only data. By design, LieFVINs preserve both the Lie group structure on which the dynamics evolve and the symplectic structure underlying the Hamiltonian or Lagrangian systems of interest. The proposed architecture learns surrogate discrete-time flow maps allowing accurate and fast prediction without numerical-integrator, neural-ODE, or adjoint techniques, which are needed for vector fields. Furthermore, the learnt discrete-time dynamics can be utilized with computationally scalable discrete-time (optimal) control strategies. 
    more » « less