skip to main content

This content will become publicly available on July 1, 2023

Title: The level-1 trigger for the SuperCDMS experiment at SNOLAB
Abstract The SuperCDMS SNOLAB dark matter search experiment aims to be sensitive to energy depositions down to 𝒪(1 eV). This imposes requirements on the resolution, signal efficiency, and noise rejection of the trigger system. To accomplish this, the SuperCDMS level-1 trigger system is implemented in an FPGA on a custom PCB. A time-domain optimal filter algorithm realized as a finite impulse response filter provides a baseline resolution of 0.38 times the standard deviation of the noise, σ n , and a 99.9% trigger efficiency for signal amplitudes of 1.1 σ n in typical noise conditions. Embedded in a modular architecture, flexible trigger logic enables reliable triggering and vetoing in a dead-time-free manner for a variety of purposes and run conditions. The trigger architecture and performance are detailed in this article.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2012936
Publication Date:
NSF-PAR ID:
10351461
Journal Name:
Journal of Instrumentation
Volume:
17
Issue:
07
Page Range or eLocation-ID:
P07010
ISSN:
1748-0221
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    <p>This data set contains all classifications that the Gravity Spy Machine Learning model for LIGO glitches from the first three observing runs (O1, O2 and O3, where O3 is split into O3a and O3b). Gravity Spy classified all noise events identified by the Omicron trigger pipeline in which Omicron identified that the signal-to-noise ratio was above 7.5 and the peak frequency of the noise event was between 10 Hz and 2048 Hz. To classify noise events, Gravity Spy made Omega scans of every glitch consisting of 4 different durations, which helps capture the morphology of noise events that are both short and long in duration.</p> <p>There are 22 classes used for O1 and O2 data (including No_Glitch and None_of_the_Above), while there are two additional classes used to classify O3 data.</p> <p>For O1 and O2, the glitch classes were: 1080Lines, 1400Ripples, Air_Compressor, Blip, Chirp, Extremely_Loud, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line, Whistle</p> <p>For O3, the glitch classes were: 1080Lines, 1400Ripples, Air_Compressor, Blip, <strong>Blip_Low_Frequency</strong>, Chirp, Extremely_Loud, <strong>Fast_Scattering</strong>, Helix, Koi_Fish, Light_Modulation, Low_Frequency_Burst, Low_Frequency_Lines, No_Glitch, None_of_the_Above, Paired_Doves, Power_Line, Repeating_Blips, Scattered_Light, Scratchy, Tomte, Violin_Mode, Wandering_Line, Whistle</p> <p>If you would like to download the Omega scansMore>>
  2. Context. The electron density ( n e − ) plays an important role in setting the chemistry and physics of the interstellar medium. However, measurements of n e − in neutral clouds have been directly obtained only toward a few lines of sight or they rely on indirect determinations. Aims. We use carbon radio recombination lines and the far-infrared lines of C + to directly measure n e − and the gas temperature in the envelope of the integral shaped filament (ISF) in the Orion A molecular cloud. Methods. We observed the C102 α (6109.901 MHz) and C109 α (5011.420 MHz) carbon radio recombination lines (CRRLs) using the Effelsberg 100 m telescope at ≈2′ resolution toward five positions in OMC-2 and OMC-3. Since the CRRLs have similar line properties, we averaged them to increase the signal-to-noise ratio of the spectra. We compared the intensities of the averaged CRRLs, and the 158 μm-[CII] and [ 13 CII] lines to the predictions of a homogeneous model for the C + /C interface in the envelope of a molecular cloud and from this comparison we determined the electron density, temperature and C + column density of the gas. Results. We detect the CRRLs towardmore »four positions, where their velocity ( v LSR  ≈ 11 km s −1 ) and widths ( σ v  ≈ 1 km s −1 ) confirms that they trace the envelope of the ISF. Toward two positions we detect the CRRLs, and the 158 μm-[CII] and [ 13 CII] lines with a signal-to-noise ratio ≥5, and we find n e −  = 0.65 ± 0.12 cm −3 and 0.95 ± 0.02 cm −3 , which corresponds to a gas density n H  ≈ 5 × 10 3 cm −3 and a thermal pressure of p th  ≈ 4 × 10 5 K cm −3 . We also constrained the ionization fraction in the denser portions of the molecular cloud using the HCN(1–0) and C 2 H(1–0) lines to x (e − ) ≤ 3 × 10 −6 . Conclusions. The derived electron densities and ionization fraction imply that x (e − ) drops by a factor ≥100 between the C + layer and the regions probed by HCN(1–0). This suggests that electron collisional excitation does not play a significant role in setting the excitation of HCN(1–0) toward the region studied, as it is responsible for only ≈10% of the observed emission.« less
  3. ABSTRACT His-Asp phosphorelay (also known as two-component signal transduction) proteins are the predominant mechanism used in most bacteria to control behavior in response to changing environmental conditions. In addition to systems consisting of a simple two-component system utilizing an isolated histidine kinase/response regulator pair, some bacteria are enriched in histidine kinases that serve as signal integration proteins; these kinases are usually characterized by noncanonical domain architecture, and the responses that they regulate may be difficult to identify. The environmental bacterium Myxococcus xanthus is highly enriched in these noncanonical histidine kinases. M. xanthus is renowned for a starvation-induced multicellular developmental program in which some cells are induced to aggregate into fruiting bodies and then differentiate into environmentally resistant spores. Here, we characterize the M. xanthus orphan hybrid histidine kinase SinK (Mxan_4465), which consists of a histidine kinase transmitter followed by two receiver domains (REC 1 and REC 2 ). Nonphosphorylatable sinK mutants were analyzed under two distinct developmental conditions and using a new high-resolution developmental assay. These assays revealed that SinK autophosphorylation and REC 1 impact the onset of aggregation and/or the mobility of aggregates, while REC 2 impacts sporulation efficiency. SinK activity is controlled by a genus-specific hypothetical protein (SinM;more »Mxan_4466). We propose that SinK serves to fine-tune fruiting body morphology in response to environmental conditions. IMPORTANCE Biofilms are multicellular communities of microorganisms that play important roles in host disease or environmental biofouling. Design of preventative strategies to block biofilms depends on understanding the molecular mechanisms used by microorganisms to build them. The production of biofilms in bacteria often involves two-component signal transduction systems in which one protein component (a kinase) detects an environmental signal and, through phosphotransfer, activates a second protein component (a response regulator) to change the transcription of genes necessary to produce a biofilm. We show that an atypical kinase, SinK, modulates several distinct stages of specialized biofilm produced by the environmental bacterium Myxococcus xanthus . SinK likely integrates multiple signals to fine-tune biofilm formation in response to distinct environmental conditions.« less
  4. An eight-element oil-filled hydrophone array is used to measure the acoustic field in littoral waters. This prototype array was deployed during an experiment between Jeffrey’s Ledge and the Stellwagen Bank region off the coast of Rockport, Massachusetts USA. During the experiment, several humpback whale vocalizations, distant ship tonals and high frequency conventional echosounder pings were recorded. Visual confirmation of humpback moving in bearing relative to the array verifies the directional sensing from array beamforming. During deployment, the array is towed at speeds varying from 4-7 kts in water depths of roughly 100 m with conditions at sea state 2 to 3. This array system consists of a portable winch with array, tow cable and 3 water-resistant boxes housing electronics. This system is deployed and operated by 2 crew members onboard a 13 m commercial fishing vessel during the experiment. Non-acoustic sensor (NAS) information is obtained to provide depth, temperature, and heading data using commercial off the shelf (COTS) components utilizing RS485/232 data communications. Acoustic data sampling was performed at 8 kHz, 30 kHz and 100 kHz with near real-time processing of data and enhanced Signal to Noise Ratio (SNR) from beamforming. The electrical system components are deployed with 3 stackedmore »electronics boxes housing power, data acquisition and data processing components in water resistant compartments. A laptop computer with 8 TB of external storage and an independent Global Positioning System (GPS) antenna is used to run Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) software providing beamformed spectrogram data and live NAS data with capability of capturing several days of data. The acquisition system consists of Surface Mount Device (SMD) pre-amplifiers with filter to an analog differential pair shipboard COTS acquisition system. Pre-amplifiers are constructed using SMD technology where components are pressure tolerant and potting is not necessary. Potting of connectors, electronics and hydrophones via 3D printed molding techniques will be discussed. Array internal components are manufactured with Thermoplastic Polyurethane (TPU) 3D printed material to dampen array vibrations with forward and aft vibration isolation modules (VIM). Polyurethane foam (PUF) used to scatter breathing waves and dampen contact from wires inside the array without attenuating high frequencies and allowing for significant noise reduction. A single Tygon array section with a length of 7.5 m and diameter of 38 mm contains 8 transducer elements with a spacing of 75 cm (1 kHz design frequency). Pre- amplifiers and NAS modules are affixed using Vectran and steel wire rope positioned by swaged stops along the strength member. The tow cable length is 100 m with a diameter of 22 mm that is potted to a hose adapter to break out 12 braided copper wire twisted pair conductors and terminates the tow cable Vectran braid. This array in its current state of development is a low-cost alternative to obtain quality acoustic data from a towed array system. Used here for observation of whale vocalizations, this type of array also has many applications in military sonar and seismic surveying. Maintenance on the array can be performed without the use of special facilities or equipment for dehosing and conveniently uses castor oil as an environmentally safe pressure compensating and coupling fluid. Array development including selection of transducers, NAS modules, acoustic acquisition system, array materials and method of construction with results from several deployments will be discussed. We also present beamformed spectrograms containing humpback whale downsweep moans and underwater blowing (bubbles) sounds associated with feeding on sand lance (Ammodytes dubius).« less
  5. All-digital basestation (BS) architectures for millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO), which equip each radio-frequency chain with dedicated data converters, have advantages in spectral efficiency, flexibility, and baseband-processing simplicity over hybrid analog-digital solutions. For all-digital architectures to be competitive with hybrid solutions in terms of power consumption, novel signal-processing methods and baseband architectures are necessary. In this paper, we demonstrate that adapting the resolution of the analog-to-digital converters (ADCs) and spatial equalizer of an all-digital system to the communication scenario (e.g., the number of users, modulation scheme, and propagation conditions) enables orders-of-magnitude power savings for realistic mmWave channels. For example, for a 256-BS-antenna 16-user system supporting 1 GHz bandwidth, a traditional baseline architecture designed for a 64-user worst-case scenario would consume 23 W in 28 nm CMOS for the ADC array and the spatial equalizer, whereas a resolution-adaptive architecture is able to reduce the power consumption by 6.7×.