skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MetaTP: Traffic Prediction with Unevenly-Distributed Road Sensing Data via Fast Adaptation
With the popularity of smartphones, large-scale road sensing data is being collected to perform traffic prediction, which is an important task in modern society. Due to the nature of the roving sensors on smartphones, the collected traffic data which is in the form of multivariate time series, is often temporally sparse and unevenly distributed across regions. Moreover, different regions can have different traffic patterns, which makes it challenging to adapt models learned from regions with sufficient training data to target regions. Given that many regions may have very sparse data, it is also impossible to build individual models for each region separately. In this paper, we propose a meta-learning based framework named MetaTP to overcome these challenges. MetaTP has two key parts, i.e., basic traffic prediction network (base model) and meta-knowledge transfer. In base model, a two-layer interpolation network is employed to map original time series onto uniformly-spaced reference time points, so that temporal prediction can be effectively performed in the reference space. The meta-learning framework is employed to transfer knowledge from source regions with a large amount of data to target regions with a few data examples via fast adaptation, in order to improve model generalizability on target regions. Moreover, we use two memory networks to capture the global patterns of spatial and temporal information across regions. We evaluate the proposed framework on two real-world datasets, and experimental results show the effectiveness of the proposed framework.  more » « less
Award ID(s):
2154059 1737590
PAR ID:
10351941
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
5
Issue:
3
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Urban traffic status (e.g., traffic speed and volume) is highly dynamic in nature, namely, varying across space and evolving over time. Thus, predicting such traffic dynamics is of great importance to urban development and transportation management. However, it is very challenging to solve this problem due to spatial-temporal dependencies and traffic uncertainties. In this paper, we solve the traffic dynamics prediction problem from Bayesian meta-learning perspective and propose a novel continuous spatial-temporal meta-learner (cST-ML), which is trained on a distribution of traffic prediction tasks segmented by historical traffic data with the goal of learning a strategy that can be quickly adapted to related but unseen traffic prediction tasks. cST-ML tackles the traffic dynamics prediction challenges by advancing the Bayesian black-box meta-learning framework through the following new points: 1) cST-ML captures the dynamics of traffic prediction tasks using variational inference; 2) cST-ML has novel designs in architecture, where CNN and LSTM are embedded to capture the spatial-temporal dependencies between traffic status and traffic related features; 3) novel training and testing algorithms for cST-ML are designed. We also conduct experiments on two real-world traffic datasets (taxi inflow and traffic speed) to evaluate our proposed cST-ML. The experimental results verify that cST-ML can significantly improve the urban traffic prediction performance and outperform all baseline models. 
    more » « less
  2. Zero shot time series forecasting is the challenge of forecasting future values of a time dependent sequence without having access to any historical data from the target series during model training. This setting differs from the traditional domain of time series forecasting, where models are typically trained using large volumes of historical data, from the same distribution. Zero shot time series forecasting models are designed to generalize to unseen time series by leveraging their knowledge learned from other, similar series during training. This work proposes two architectures designed for zero shot time series forecasting: zSiFT and zSHiFT. Both architectures use transformer models arranged in a Siamese network configuration. The zSHiFT architecture differs from the zSiFT by the introduction of a hierarchical transformer component to the Siamese network. These architectures are evaluated on vehicular traffic data in California available from the Caltrans Performance Measurement System (PeMS). The models were trained with traffic flow data collected in one region of California and then are evaluated by forecasting traffic in other regions. Forecast accuracy was evaluated at different time horizons (4 to 48 hours). The zSiFT model achieves a Mean Absolute Error (MAE) that is 8.3% lower than the baseline LSTM with attention mechanism model. The zSiFT model achieves an MAE which is 6.6% lower than zSHiFT’s MAE. 
    more » « less
  3. Urban traffic status (e.g., traffic speed and volume) is highly dynamic in nature, namely, varying across space and evolving over time. Thus, predicting such traffic dynamics is of great importance to urban development and transportation management. However, it is very challenging to solve this problem due to spatial-temporal dependencies and traffic uncertainties. In this article, we solve the traffic dynamics prediction problem from Bayesian meta-learning perspective and propose a novel continuous spatial-temporal meta-learner (cST-ML), which is trained on a distribution of traffic prediction tasks segmented by historical traffic data with the goal of learning a strategy that can be quickly adapted to related but unseen traffic prediction tasks. cST-ML tackles the traffic dynamics prediction challenges by advancing the Bayesian black-box meta-learning framework through the following new points: (1) cST-ML captures the dynamics of traffic prediction tasks using variational inference, and to better capture the temporal uncertainties within tasks, cST-ML performs as a rolling window within each task; (2) cST-ML has novel designs in architecture, where CNN and LSTM are embedded to capture the spatial-temporal dependencies between traffic status and traffic-related features; (3) novel training and testing algorithms for cST-ML are designed. We also conduct experiments on two real-world traffic datasets (taxi inflow and traffic speed) to evaluate our proposed cST-ML. The experimental results verify that cST-ML can significantly improve the urban traffic prediction performance and outperform all baseline models especially when obvious traffic dynamics and temporal uncertainties are presented. 
    more » « less
  4. Spatiotemporal traffic data imputation is of great significance in intelligent transportation systems and data-driven decision-making processes. To perform efficient learning and accurate reconstruction from partially observed traffic data, we assert the importance of characterizing both global and local trends in time series. In the literature, substantial works have demonstrated the effectiveness of utilizing the low-rank property of traffic data by matrix/tensor completion models. In this study, we first introduce a Laplacian kernel to temporal regularization for characterizing local trends in traffic time series, which can be formulated as a circular convolution. Then, we develop a low-rank Laplacian convolutional representation (LCR) model by putting the circulant matrix nuclear norm and the Laplacian kernelized temporal regularization together, which is proved to meet a unified framework that has a fast Fourier transform (FFT) solution in log-linear time complexity. Through extensive experiments on several traffic datasets, we demonstrate the superiority of LCR over several baseline models for imputing traffic time series of various time series behaviors (e.g., data noises and strong/weak periodicity) and reconstructing sparse speed fields of vehicular traffic flow. The proposed LCR model is also an efficient solution to large-scale traffic data imputation over the existing imputation models. 
    more » « less
  5. Dynamic transfer learning refers to the knowledge transfer from a static source task with adequate label information to a dynamic target task with little or no label information. However, most existing theoretical studies and practical algorithms of dynamic transfer learning assume that the target task is continuously evolving over time. This strong assumption is often violated in real world applications, e.g., the target distribution is suddenly changing at some time stamp. To solve this problem, in this paper, we propose a novel meta-learning framework L2S based on a progressive meta-task scheduler for dynamic transfer learning. The crucial idea of L2S is to incrementally learn to schedule the meta-pairs of tasks and then learn the optimal model initialization from those meta-pairs of tasks for fast adaptation to the newest target task. The effectiveness of our L2S framework is verified both theoretically and empirically. 
    more » « less