An important problem in lubrication is the squeezing of a thin liquid film between a rigid sphere and an elastic substrate under normal contact. Numerical solution of this problem typically uses iteration techniques. A difficulty with iteration schemes is that convergence becomes increasingly difficult under increasingly heavy loads. Here we devise a numerical scheme that does not involve iteration. Instead, a linear problem is solved at every time step. The scheme is fully automatic, stable and efficient. We illustrate this technique by solving a relaxation test in which a rigid spherical indenter is brought rapidly into normal contact with a thick elastic substrate lubricated by a liquid film. The sphere is then fixed in position as the pressure relaxes. We also carried out relaxation experiments on a lubricated soft PDMS (polydimethysiloxane) substrate under different conditions. These experiments are in excellent agreement with the numerical solution.
more »
« less
Rytov’s EMT Applicability for Photonic Lattices
We address the properties of photonic lattices by Rytov’s EMT method. The symmetric solution of Rytov’s eigenvalue equations pertains to normal incidence angles with the asymmetric solution being relevant for off-normal illumination.
more »
« less
- Award ID(s):
- 1809143
- PAR ID:
- 10352233
- Date Published:
- Journal Name:
- Technical Digest Series (Optica Publishing Group, 2021)
- Page Range / eLocation ID:
- JTh5A.138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polydimethylsiloxane-based optofluidics provides a powerful platform for a complete analytical lab-on-chip. Here, we report on a novel on-chip laser source that can be integrated with sample preparation and analysis functions. A corrugated sidewall structure is integrated into a microfluidic channel to form a distributed feedback (DFB) laser using rhodamine 6G dissolved in an ethylene glycol and water solution. Lasing is demonstrated with a threshold pump power of 87.9 µW, corresponding to a pump intensity of . Laser threshold and output power are optimized with respect to rhodamine 6G concentration and core index and found to be in good agreement with a rate equation model. Additionally, the laser can be switched on and off mechanically using a pneumatic cell inducing positive pressure on the grating.more » « less
-
Human respiratory mucus (HRM) is extremely soft, compelling passive microrheology for linear viscoelastic characterization. We focus this study on the use of passive microrheology to characterize HRM heterogeneity, a phenomenon in normal HRM that becomes extreme during cystic fibrosis (CF) disease. Specifically, a fraction of the mucin polymers comprising HRM phase-separate into insoluble structures, called flakes, dispersed in mucin-depleted solution. We first reconstitute HRM samples to the MUC5B:MUC5AC mucin ratios consistent with normal and CF clinical samples, which we show recapitulate progressive flake formation and heterogeneity. We then employ passive particle tracking with 200 nm and 1 μm diameter beads in each reconstituted sample. To robustly analyze the tracking data, we introduce statistical denoising methods for low signal-to-noise tracking data within flakes, tested and verified using model-generated synthetic data. These statistical methods provide a fractional Brownian motion classifier of all successfully denoised, tracked beads in flakes and the dilute solution. From the ensemble of classifier data, per bead diameter and mucus sample, we then employ clustering methods to learn and infer multiple levels of heterogeneity: (i) tracked bead data within vs. outside flakes and (ii) within-flake data buried within or distinguishable from the experimental noise floor. Simulated data consistent with experimental data (within and outside flakes) are used to explore form(s) of the generalized Stokes–Einstein relation (GSER) that recover the dynamic moduli of homogeneous and heterogeneous truth sets of purely flakelike, dilute solution, and mixture samples. The appropriate form of GSER is applied to experimental data to show (i) flakes are heterogeneous with gel and sol domains; (ii) dilute solutions are heterogeneous with only sol domains; and (iii) flake and dilute solution properties vary with probe diameter.more » « less
-
For data which are analytic only close to the boundary of the domain, we prove that in the inviscid limit the Navier-Stokes solution converges to the corresponding Euler solution. Compared to earlier results, in this paper we only require boundedness of an integrable analytic norm of the initial data, with respect to the normal variable, thus removing the uniform in viscosity boundedness assumption on the vorticity. As a consequence, we may allow the initial vorticity to be unbounded close to the set $y=0$, which we take as the boundary of the domain; in particular the vorticity can grow with the rate $$1/y^{1-\delta}$$ for $$y$$ close to $$0$$, for any $$\delta>0$$.more » « less
-
Abstract Delivering magnetic nanoparticles (MNPs) into mitochondria provides a facile approach to manipulate cell life because mitochondria play essential roles in cell survival and death. Here we report the use of enzyme‐responsive peptide assemblies to deliver MNPs into mitochondria of live cells. The mitochondria‐targeting peptide (Mito‐Flag), as the substrate of enterokinase (ENTK), assembles with MNPs in solution. The MNPs that are encapsulated by Mito‐Flag peptides selectively accumulate to the mitochondria of cancer cells, rather than normal cells. The mitochondrial localization of MNPs reduces the viability of the cancer cells, but hardly affects the survival of the normal cell. This work demonstrates a new and facile strategy to specifically transport MNPs to the mitochondria in cancer cells for exploring the applications of MNPs as the targeted drug for biomedicine and cancer therapy.more » « less
An official website of the United States government

