Abstract Buffers of known quality for the calibration of seawater pHTmeasurements are not widely or commercially available. Although there exist published compositions for the 0.04 mol kg‐H2O−1equimolar buffer 2‐amino‐2‐hydroxymethyl‐1,3‐propanediol (TRIS)‐TRIS · H+in synthetic seawater, there are no explicit procedures that describe preparing this buffer to achieve a particular pHTwith a known uncertainty. Such a procedure is described here which makes use of easily acquired laboratory equipment and techniques to produce a buffer with a pHTwithin 0.006 of the published pHTvalue originally assigned by DelValls and Dickson (1998), 8.094 at 25°C. Such a buffer will be suitable for the calibration of pH measurements expected to fulfil the “weather” uncertainty goal of the Global Ocean Acidification Observation Network of 0.02 in pHT, an uncertainty goal appropriate to “identify relative spatial patterns and short‐term variation.”
more »
« less
Technical note: Interpreting pH changes
Abstract. The number and quality of ocean pH measurements have increasedsubstantially over the past few decades such that trends, variability, andspatial patterns of change are now being evaluated. However, comparing pHchanges across domains with different initial pH values can be misleadingbecause a pH change reflects a relative change in the hydrogen ionconcentration ([H+], expressed in mol kg−1) rather than anabsolute change in [H+]. We recommend that [H+] be used inaddition to pH when describing such changes and provide three examplesillustrating why.
more »
« less
- PAR ID:
- 10352337
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 18
- Issue:
- 4
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 1407 to 1415
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract It is well understood that differences in the cues used by consumers and their resources in fluctuating environments can give rise to trophic mismatches governing the emergent effects of global change. Trophic mismatches caused by changes in consumer energetics during periods of low resource availability have received far less attention, although this may be common for consumers during winter when primary producers are limited by light. Even less is understood about these dynamics in marine ecosystems, where consumers must cope with energetically costly changes in CO2‐driven carbonate chemistry that will be most pronounced in cold temperatures. This may be especially important for calcified marine herbivores, such as the pinto abalone (Haliotis kamschatkana).H. kamschatkanaare of high management concern in the North Pacific due to the active recreational fishery and their importance among traditional cultures, and research suggests they may require more energy to maintain their calcified shells and acid/base balance with ocean acidification. Here we use field surveys to demonstrate seasonal mismatches in the exposure of marine consumers to low pH and algal resource identity during winter in a subpolar, marine ecosystem. We then use these data to test how the effects of exposure to seasonally relevant pH conditions onH. kamschatkanaare mediated by seasonal resource identity. We find that exposure to projected future winter pH conditions decreases metabolism and growth, and this effect on growth is pronounced when their diet is limited to the algal species available during winter. Our results suggest that increases in the energetic demands of pinto abalone caused by ocean acidification during winter will be exacerbated by seasonal shifts in their resources. These findings have profound implications for other marine consumers and highlight the importance of considering fluctuations in exposure and resources when inferring the emergent effects of global change.more » « less
-
null (Ed.)Controlling the reactivity of transition metal complexes by positioning non-innocent functionalities around the catalytic pocket is a concept that has led to significant advances in catalysis. Here we describe our efforts toward the synthesis of dicationic phosphine gold complexes of general formula [( o -Ph 2 P(C 6 H 4 )Carb)Au(tht)] 2+ decorated by a carbenium moiety (Carb) positioned in the immediate vicinity of the gold center. While the most acidic examples of such compounds have limited stability, the dicationic complexes with Carb + = 9- N -methylacridinium and Carb + = [C(Ar N ) 2 ] + (Ar N = p -(C 6 H 4 )NMe 2 ) are active as catalysts for the cycloisomerization of N -propargyl-4-fluorobenzamide, a substrate chosen to benchmark reactivity. The dicationic complex [( o -Ph 2 P(C 6 H 4 )C(Ar N ) 2 )Au(tht)] 2+ , which also promotes hydroarylation and enyne cyclization reactions, displays a higher catalytic activity than its acridinium analog, indicating that the electrophilic reactivity of these complexes scales with the Lewis acidity of the carbenium moiety. These results support the role of the carbenium unit as a non-innocent functionality which can readily enhance the activity of the adjacent metal center. Finally, we also describe our efforts toward the generation and isolation of free γ-cationic phosphines of general formula [( o -Ph 2 P(C 6 H 4 )Carb)] + . While cyclization into phosphonium species is observed for Carb + = [C(Ar N ) 2 ] + , [C(Ph)(Ar N )] + , and 9-xanthylium, [( o -Ph 2 P(C 6 H 4 )-9- N -methylacridinium)] + can be isolated as an air stable, biphilic derivative with uncompromised Lewis acidic and basic properties.more » « less
-
Abstract Our efforts in the chemistry of gold complexes featuring ambiphilic phosphine‐carbenium L/Z‐type ligand have led us to consider the reduction of the carbenium moiety as a means to modulate the gold–carbenium interaction present in these complexes. Here, it was shown that the one‐electron reduction of [(o‐Ph2P(C6H4)Acr)AuCl]+(Acr=9‐N‐methylacridinium) produces a neutral stable radical, the structure of which showed a marked increase in the Au–Acr distance. Related structural changes were observed for the phosphine oxide analogue [(o‐Ph2P(O)(C6H4)Acr]+, the reduction of which interfered with the P=O→carbenium interaction. These structural effects, driven by a reduction‐induced change in the electronic and electrostatic characteristics of the compounds, showed that the charge and accepting properties of the carbenium unit can be modulated. These results highlight the redox‐noninnocence of carbenium Z‐type ligand, a feature that can be exploited to induce specific conformational changes.more » « less
-
Iron hexacyanoferrate (FeHCF) particles were synthesized at room temperature with ethylenediaminetetraacetic acid (EDTA) at varying pH. The presence of EDTA produced faceted particles and increasing synthesis pH resulted in slower reaction kinetics and larger particles with lower water content and fewer anion vacancies determined by TGA and Mössbauer spectroscopy. Electrochemical testing of sodium metal half cells revealed higher capacity in FeHCF particles grown at lower pH with EDTA, obtaining a maximum discharge capacity of 151 mA h g −1 with 79% capacity retention after 100 cycles at 100 mA g −1 and a rate capability of 122 mA h g −1 at 3.2 A g −1 . In contrast, particles grown at higher pH had stunted low-spin Fe redox activity but with improved long-term cyclic stability. These findings demonstrate that small changes in synthesis pH can greatly affect the growth and electrochemical properties of FeHCF when using a pH sensitive chelating agent such as EDTA.more » « less
An official website of the United States government

