The goal of this study is to bring current computational thinking in STEM educational efforts in line with the increasingly computational nature of STEM research practices. We conducted interviews with STEM practitioners in various fields to understand the nature of CT as it happens in authentic research settings and to revisit a first iteration of our definition of CT in form of a taxonomy. This exploration gives us insight into how scientists use computers in their work and help us identify what practices are important to include in high school STEM learning contexts. Our findings will inform the design of classroom activities to better prepare today’s students for the modern STEM landscape that awaits them.
more »
« less
Integrating Computational Thinking in STEM Education: A Literature Review
Research focusing on the integration of computational thinking (CT) into science, technology, engineering, and mathematics (STEM) education started to emerge. We conducted a semi-systematic literature review on 55 empirical studies on this topic. Our findings include: (a) the majority of the studies adopted domain-general definitions of CT and a few proposed domain-specific CT definitions in STEM education; (b) the most popular instructional model was problem-based instruction, and the most popular topic contexts included game design, robotics, and computational modelling; (c) while the assessments of student learning in integrated CT and STEM education targeted different objectives with different formats, about a third of them assessed integrated CT and STEM; (d) about a quarter of the studies reported differential learning processes and outcomes between groups, but very few of them investigated how pedagogical design could improve equity. Based on the findings, suggestions for future research and practice in this field are discussed in terms of operationalizing and assessing CT in STEM contexts, instructional strategies for integrating CT in STEM, and research for broadening participation in integrated CT and STEM education.
more »
« less
- Award ID(s):
- 1742083
- PAR ID:
- 10352953
- Date Published:
- Journal Name:
- International Journal of Science and Mathematics Education
- ISSN:
- 1571-0068
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Computational thinking (CT) is an important twenty-first century skill that begins developing early. Recent interest in incorporating early CT experiences in early childhood education (i.e., preschool) has increased. In fact, the early years mark an important time during which initial competencies are acquired, interest and motivation begins to form, and in which children may develop a sense of belonging in STEM fields. As a result, providing children with access to robotics and computer science experiences to support CT that are also developmentally appropriate and culturally relevant is key. This paper uses the “powerful ideas” of computer science, seven developmentally appropriate CT concepts that children can learn, as a framework and explores the experiences of two (composite) teachers who participated in and co-developed a culturally relevant robotics program and the processes they undertake to support children’s CT development and learning. This paper considers practices that support the seven key powerful ideals while leveraging existing instructional routines and contexts that are already occurring in most classrooms, such as centers, small group activities, classroom environments, and read-alouds. Of note, this paper prioritizes approaches that acknowledge, center, and feature the ethnic, cultural, and linguistic backgrounds of young children and their families. Identifying affordable and accessible practices, this paper provides educators with tangible, integrated, and authentic practices to support children’s computational thinking, STEM learning, and sense of belonging.more » « less
-
There is increasing interest in broadening participation in computational thinking (CT) by integrating CT into pre-college STEM curricula and instruction. Science, in particular, is emerging as an important discipline to support integrated learning. This highlights the need for carefully designed assessments targeting the integration of science and CT to help teachers and researchers gauge students’ proficiency with integrating the disciplines. We describe a principled design process to develop assessment tasks and rubrics that integrate concepts and practices across science, CT, and computational modeling. We conducted a pilot study with 10 high school students who responded to integrative assessment tasks as part of a physics-based computational modeling unit. Our findings indicate that the tasks and rubrics successfully elicit both Physics and CT constructs while distinguishing important aspects of proficiency related to the two disciplines. This work illustrates the promise of using such assessments formatively in integrated STEM and computing learning contexts.more » « less
-
We describe a professional development model that supports teachers to integrate computational thinking (CT) and computer science principles into middle school science and STEM classes. The model includes the collaborative design (co-design) (Voogt et al., 2015) of storylines or curricular units aligned with the Next Generation Science Standards (NGSS Lead States, 2013) that utilize programmable sensors such as those contained on the micro:bit. Teachers spend several workshops co-designing CT-integrated storylines and preparing to implement them with their own students. As part of this process, teachers develop or modify curricular materials to ensure a focus on coherent, student driven instruction through the investigation of scientific phenomena that are relevant to the students and utilize sensor technology. Teachers implement the storylines and meet to collaboratively reflect on their instructional practices as well as their students’ learning. Throughout this cyclical, multi-year process, teachers develop expertise in CT-integrated science instruction as they plan for and use instructional practices that align with three dimension science teaching and foreground computational thinking. Throughout the professional learning process, teachers alternate between wearing their “student hats” and their “teacher hats”, in order to maintain both a student and teacher perspective as they co-design and reflect on their implementation of CT-integrated units. This paper illustrates two teachers’ experiences of the professional development process over a two-year period, including their learning, planning, implementation, and reflection on two co-designed units.more » « less
-
Abstract The intricate interdependence of food, energy, and water (FEW) systems necessitates effective and coordinated educational efforts across various contexts to equip students with the skills to tackle FEW challenges. As an emerging interdisciplinary field, understanding educators’ and education researchers’ views on the FEW-Nexus perspective, self-efficacy, needs, and approaches to promoting community engagement are vital to facilitating the growth of this field. The National Collaborative for Research on Food, Energy, and Water Education (NC-FEW) is an NSF-funded, emergent, interdisciplinary community of educators and discipline-based education researchers engaged in sustained network and capacity building around FEW-Nexus. We present initial survey findings from 166 NC-FEW members, predominantly postsecondary faculty from varied disciplines. Our goal was to understand their views of FEW-Nexus perspective, self-efficacy in FEW-Nexus-specific teaching and education research, instructional design, and community engagement. The findings suggest that FEW-Nexus educators in the NC-FEW community view the Nexus as a blend of diverse concepts and themes, emphasizing the necessity of establishing a concrete definition of the nexus perspective. Their self-efficacy levels were higher in general STEM teaching (mean = 4.03) and STEM education research (mean = 3.61) compared to FEW-Nexus-specific teaching (mean = 3.43) and education research (mean = 3.18). Respondents reported feeling moderately connected to the FEW-Nexus educator community (mean = 2.21). They also outlined anticipated community benefits and contributions to promoting teaching and learning in the FEW-Nexus. These findings highlight the significance of boosting FEW-Nexus educators’ self-efficacy and building a stronger sense of community, having important implications for professional development in emerging fields and broader educational reform endeavors.more » « less
An official website of the United States government

