skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Joint analysis of recurrence and termination: A Bayesian latent class approach
Like many other clinical and economic studies, each subject of our motivating transplant study is at risk of recurrent events of non-fatal tissue rejections as well as the terminating event of death due to total graft rejection. For such studies, our model and associated Bayesian analysis aim for some practical advantages over competing methods. Our semiparametric latent-class-based joint model has coherent interpretation of the covariate (including race and gender) effects on all functions and model quantities that are relevant for understanding the effects of covariates on future event trajectories. Our fully Bayesian method for estimation and prediction uses a complete specification of the prior process of the baseline functions. We also derive a practical and theoretically justifiable partial likelihood-based semiparametric Bayesian approach to deal with the analysis when there is a lack of prior information about baseline functions. Our model and method can accommodate fixed as well as time-varying covariates. Our Markov Chain Monte Carlo tools for both Bayesian methods are implementable via publicly available software. Our Bayesian analysis of transplant study and simulation study demonstrate practical advantages and improved performance of our approach.  more » « less
Award ID(s):
1853099
PAR ID:
10353183
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Statistical Methods in Medical Research
Volume:
30
Issue:
2
ISSN:
0962-2802
Page Range / eLocation ID:
508 to 522
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many popular survival models rely on restrictive parametric, or semiparametric, assumptions that could provide erroneous predictions when the effects of covariates are complex. Modern advances in computational hardware have led to an increasing interest in flexible Bayesian nonparametric methods for time-to-event data such as Bayesian additive regression trees (BART). We propose a novel approach that we call nonparametric failure time (NFT) BART in order to increase the flexibility beyond accelerated failure time (AFT) and proportional hazard models. NFT BART has three key features: (1) a BART prior for the mean function of the event time logarithm; (2) a heteroskedastic BART prior to deduce a covariate-dependent variance function; and (3) a flexible nonparametric error distribution using Dirichlet process mixtures (DPM). Our proposed approach widens the scope of hazard shapes including nonproportional hazards, can be scaled up to large sample sizes, naturally provides estimates of uncertainty via the posterior and can be seamlessly employed for variable selection. We provide convenient, user-friendly, computer software that is freely available as a reference implementation. Simulations demonstrate that NFT BART maintains excellent performance for survival prediction especially when AFT assumptions are violated by heteroskedasticity. We illustrate the proposed approach on a study examining predictors for mortality risk in patients undergoing hematopoietic stem cell transplant (HSCT) for blood-borne cancer, where heteroskedasticity and nonproportional hazards are likely present. 
    more » « less
  2. In medical studies, time-to-event outcomes such as time to death or relapse of a disease are routinely recorded along with longitudinal data that are observed intermittently during the follow-up period. For various reasons, marginal approaches to model the event time, corresponding to separate approaches for survival data/longitudinal data, tend to induce bias and lose efficiency. Instead, a joint modeling approach that brings the two types of data together can reduce or eliminate the bias and yield a more efficient estimation procedure. A well-established avenue for joint modeling is the joint likelihood approach that often produces semiparametric efficient estimators for the finite-dimensional parameter vectors in both models. Through a transformation survival model with an unspecified baseline hazard function, this review introduces joint modeling that accommodates both baseline covariates and time-varying covariates. The focus is on the major challenges faced by joint modeling and how they can be overcome. A review of available software implementations and a brief discussion of future directions of the field are also included. 
    more » « less
  3. Summary Panel count data arise when the number of recurrent events experienced by each subject is observed intermittently at discrete examination times. The examination time process can be informative about the underlying recurrent event process even after conditioning on covariates. We consider a semiparametric accelerated mean model for the recurrent event process and allow the two processes to be correlated through a shared frailty. The regression parameters have a simple marginal interpretation of modifying the time scale of the cumulative mean function of the event process. A novel estimation procedure for the regression parameters and the baseline rate function is proposed based on a conditioning technique. In contrast to existing methods, the proposed method is robust in the sense that it requires neither the strong Poisson-type assumption for the underlying recurrent event process nor a parametric assumption on the distribution of the unobserved frailty. Moreover, the distribution of the examination time process is left unspecified, allowing for arbitrary dependence between the two processes. Asymptotic consistency of the estimator is established, and the variance of the estimator is estimated by a model-based smoothed bootstrap procedure. Numerical studies demonstrated that the proposed point estimator and variance estimator perform well with practical sample sizes. The methods are applied to data from a skin cancer chemoprevention trial. 
    more » « less
  4. Abstract We consider theoretical and practical issues for innovatively using a large number of covariates in clinical trials to achieve various design objectives without model misspecification. Specifically, we propose a new family of semiparametric covariate‐adjusted response‐adaptive randomization (CARA) designs and we use the target maximum likelihood estimation (TMLE) to analyze the correlated data from CARA designs. Our approach can flexibly achieve multiple objectives and correctly incorporate the effect of a large number of covariates on the responses without model misspecification. We also obtain the consistency and asymptotic normality of the target parameters, allocation probabilities, and allocation proportions. Numerical studies demonstrate that our approach has advantages over existing approaches, even when the data‐generating distribution is complicated. 
    more » « less
  5. Abstract Statistical analysis of longitudinal data often involves modeling treatment effects on clinically relevant longitudinal biomarkers since an initial event (the time origin). In some studies including preventive HIV vaccine efficacy trials, some participants have biomarkers measured starting at the time origin, whereas others have biomarkers measured starting later with the time origin unknown. The semiparametric additive time-varying coefficient model is investigated where the effects of some covariates vary nonparametrically with time while the effects of others remain constant. Weighted profile least squares estimators coupled with kernel smoothing are developed. The method uses the expectation maximization approach to deal with the censored time origin. The Kaplan–Meier estimator and other failure time regression models such as the Cox model can be utilized to estimate the distribution and the conditional distribution of left censored event time related to the censored time origin. Asymptotic properties of the parametric and nonparametric estimators and consistent asymptotic variance estimators are derived. A two-stage estimation procedure for choosing weight is proposed to improve estimation efficiency. Numerical simulations are conducted to examine finite sample properties of the proposed estimators. The simulation results show that the theory and methods work well. The efficiency gain of the two-stage estimation procedure depends on the distribution of the longitudinal error processes. The method is applied to analyze data from the Merck 023/HVTN 502 Step HIV vaccine study. 
    more » « less