skip to main content


Title: A growth model for water distribution networks with loops
Water distribution networks (WDNs) expand their service areas over time. These growth dynamics are poorly understood. One facet of WDNs is that they have loops in general, and closing loops may be a functionally important process for enhancing their robustness and efficiency. We propose a growth model for WDNs that generates networks with loops and is applicable to networks with multiple water sources. We apply the proposed model to four empirical WDNs to show that it produces networks whose structure is similar to that of the empirical WDNs. The comparison between the empirical and modelled WDNs suggests that the empirical WDNs may realize a reasonable balance between cost, efficiency and robustness in terms of the network structure. We also study the design of pipe diameters based on a biological positive feedback mechanism. Specifically, we apply a model inspired by Physarum polycephalum to find moderate positive correlations between the empirical and modelled pipe diameters. The difference between the empirical and modelled pipe diameters suggests that we may be able to improve the performance of WDNs by following organizing principles of biological flow networks.  more » « less
Award ID(s):
1638301
NSF-PAR ID:
10354632
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
477
Issue:
2255
ISSN:
1364-5021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The criticality of seismic robustness of the water pipe networks cannot be overstated. Current methodologies for optimizing seismic robustness of city‐scale water pipe networks are scarce. A very few studies that can be found are also prone to long optimization runtimes due to the requirement of repeated hydraulic analysis. Hence, there is a critical need for the identification of computationally efficient surrogate optimization methods for maximizing seismic robustness of water pipe networks. To address this need, this research was conducted to identify, for the first time, computationally efficient topological surrogates for hydraulic simulation‐based optimization. The computational efficiency of surrogate optimization was measured in terms of solution quality (i.e., post‐earthquake serviceability) and computational runtime. Ten different topological connectivity metrics were evaluated out of which five were considered computationally infeasible due to their prohibitive optimization runtime. Five remaining metrics were then used to formulate five surrogate objective functions for seismic robustness of water pipe networks. Each of these functions was optimized using a simulated annealing‐based algorithm. Application of the proposed approach to city‐level benchmark networks helped to identify two metrics out of ten that offered a substantial reduction in optimization runtime with a minimal loss in solution quality. These findings will be highly valuable to water distribution network managers for identifying economical rehabilitation policies for enhancing the seismic robustness at a city‐scale within a reasonable amount of time.

     
    more » « less
  2. null (Ed.)
    Biological systems are typically dependent on transportation networks for the efficient distribution of resources and information. Revealing the decentralized mechanisms underlying the generative process of these networks is key in our global understanding of their functions and is of interest to design, manage and improve human transport systems. Ants are a particularly interesting taxon to address these issues because some species build multi-sink multi-source transport networks analogous to human ones. Here, by combining empirical field data and modelling at several scales of description, we show that pre-existing mechanisms of recruitment with positive feedback involved in foraging can account for the structure of complex ant transport networks. Specifically, we find that emergent group-level properties of these empirical networks, such as robustness, efficiency and cost, can arise from models built on simple individual-level behaviour addressing a quality-distance trade-off by the means of pheromone trails. Our work represents a first step in developing a theory for the generation of effective multi-source multi-sink transport networks based on combining exploration and positive reinforcement of best sources. 
    more » « less
  3. Abstract

    Although brain functionality is often remarkably robust to lesions and other insults, it may be fragile when these take place in specific locations. Previous attempts to quantify robustness and fragility sought to understand how the functional connectivity of brain networks is affected by structural changes, using either model-based predictions or empirical studies of the effects of lesions. We advance a geometric viewpoint relying on a notion of network curvature, the so-called Ollivier-Ricci curvature. This approach has been proposed to assess financial market robustness and to differentiate biological networks of cancer cells from healthy ones. Here, we apply curvature-based measures to brain structural networks to identify robust and fragile brain regions in healthy subjects. We show that curvature can also be used to track changes in brain connectivity related to age and autism spectrum disorder (ASD), and we obtain results that are in agreement with previous MRI studies.

     
    more » « less
  4. Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, that is, dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales. 
    more » « less
  5. null (Ed.)
    Synopsis Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, i.e. dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales. 
    more » « less