skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A growth model for water distribution networks with loops
Water distribution networks (WDNs) expand their service areas over time. These growth dynamics are poorly understood. One facet of WDNs is that they have loops in general, and closing loops may be a functionally important process for enhancing their robustness and efficiency. We propose a growth model for WDNs that generates networks with loops and is applicable to networks with multiple water sources. We apply the proposed model to four empirical WDNs to show that it produces networks whose structure is similar to that of the empirical WDNs. The comparison between the empirical and modelled WDNs suggests that the empirical WDNs may realize a reasonable balance between cost, efficiency and robustness in terms of the network structure. We also study the design of pipe diameters based on a biological positive feedback mechanism. Specifically, we apply a model inspired by Physarum polycephalum to find moderate positive correlations between the empirical and modelled pipe diameters. The difference between the empirical and modelled pipe diameters suggests that we may be able to improve the performance of WDNs by following organizing principles of biological flow networks.  more » « less
Award ID(s):
1638301
PAR ID:
10354632
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
477
Issue:
2255
ISSN:
1364-5021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The criticality of seismic robustness of the water pipe networks cannot be overstated. Current methodologies for optimizing seismic robustness of city‐scale water pipe networks are scarce. A very few studies that can be found are also prone to long optimization runtimes due to the requirement of repeated hydraulic analysis. Hence, there is a critical need for the identification of computationally efficient surrogate optimization methods for maximizing seismic robustness of water pipe networks. To address this need, this research was conducted to identify, for the first time, computationally efficient topological surrogates for hydraulic simulation‐based optimization. The computational efficiency of surrogate optimization was measured in terms of solution quality (i.e., post‐earthquake serviceability) and computational runtime. Ten different topological connectivity metrics were evaluated out of which five were considered computationally infeasible due to their prohibitive optimization runtime. Five remaining metrics were then used to formulate five surrogate objective functions for seismic robustness of water pipe networks. Each of these functions was optimized using a simulated annealing‐based algorithm. Application of the proposed approach to city‐level benchmark networks helped to identify two metrics out of ten that offered a substantial reduction in optimization runtime with a minimal loss in solution quality. These findings will be highly valuable to water distribution network managers for identifying economical rehabilitation policies for enhancing the seismic robustness at a city‐scale within a reasonable amount of time. 
    more » « less
  2. null (Ed.)
    Biological systems are typically dependent on transportation networks for the efficient distribution of resources and information. Revealing the decentralized mechanisms underlying the generative process of these networks is key in our global understanding of their functions and is of interest to design, manage and improve human transport systems. Ants are a particularly interesting taxon to address these issues because some species build multi-sink multi-source transport networks analogous to human ones. Here, by combining empirical field data and modelling at several scales of description, we show that pre-existing mechanisms of recruitment with positive feedback involved in foraging can account for the structure of complex ant transport networks. Specifically, we find that emergent group-level properties of these empirical networks, such as robustness, efficiency and cost, can arise from models built on simple individual-level behaviour addressing a quality-distance trade-off by the means of pheromone trails. Our work represents a first step in developing a theory for the generation of effective multi-source multi-sink transport networks based on combining exploration and positive reinforcement of best sources. 
    more » « less
  3. Dynamic transportation networks are embedded in all levels of biological organization. Ever-growing anthropogenic disturbances and an increasingly variable climate highlight the importance of understanding how these networks restructure under environmental perturbations. Polydomous wood ants provide a convenient model system to study the resilience of self-organizing multi-source, multi-sink transportation networks. We used 10 years of longitudinal empirical data on both unperturbed and experimentally manipulated colony networks to develop and validate a comprehensive dynamic simulation model to study network restructuring after resource removal. We performed simulation experiments to study the effects of excluding food sources with varying importance, either temporarily or permanently, imitating pulse and press perturbations of the networks. We found that removing heavily used resources, corresponding to a strong targeted perturbation, persistently decreased network efficiency, unlike random or weak perturbations. We also found that strong perturbations had excessively adverse effects on robustness and function, reducing the networks’ ability to withstand potential future perturbations. When transportation networks develop around the efficient use of a few key resources, they may be unable to quickly recover from the loss of these through self-organized restructuring. Our findings highlight the importance of considering the interaction of perturbation strength and network structure in studying transportation network dynamics. 
    more » « less
  4. Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, that is, dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales. 
    more » « less
  5. null (Ed.)
    Synopsis Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, i.e. dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales. 
    more » « less