skip to main content

Title: An Adaptive Approach to Minimize System Level Tests Targeting Low Voltage DVFS Failures
Traditional low cost scan based structural tests no longer suffice for delivering acceptable defect levels in many processor SOCs, especially those targeting low power applications. Expensive functional system level tests (SLTs) have become an additional and necessary final test screen. Efforts to eliminate or minimize the use of SLTs have focused on new fault models and improved test generation methods to improve the effectiveness of scan tests. In this paper we argue that given the limitations of scan timing tests, such an approach may not be sufficient to detect all the low voltage failures caused by circuit timing variability that appear to dominate SLT fallout. Instead, we propose an alternate approach for meaningful cost savings that adaptively avoids SLT tests for a subset of the manufactured parts. This is achieved by using parametric and scan tests results from earlier in the test flow to identify low delay variability parts that can avoid SLT with minimal impact on DPPM. Extensive SPICE simulations support the viability of our proposed approach. We also show that such an adaptive test flow is also very well suited to real time optimization during the using machine-learning techniques.
Award ID(s):
Publication Date:
Journal Name:
2019 IEEE International Test Conference (ITC)
Page Range or eLocation-ID:
1 to 10
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this paper is to experimentally validate the graph-based approach that was advanced in our previous work for predicting the heat flux in metal additive manufactured parts. We realize this objective in the specific context of the directed energy deposition (DED) additive manufacturing process. Accordingly, titanium alloy (Ti6Al4V) test parts (cubes) measuring 12.7 mm × 12.7 mm × 12.7 mm were deposited using an Optomec hybrid DED system at the University of Nebraska-Lincoln (UNL). A total of six test parts were manufactured under varying process settings of laser power, material flow rate, layer thickness, scan velocity, and dwell time between layers. During the build, the temperature profiles for these test parts were acquired using a single thermocouple affixed to the substrate (also Ti6Al4V). The graph-based approach was tailored to mimic the experimental DED process conditions. The results indicate that the temperature trends predicted from the graph theoretic approach closely match the experimental data; the mean absolute percentage error between the experimental and predicted temperature trends were in the range of 6% ∼ 15%. This work thus lays the foundation for predicting distortion and the microstructure evolved in metal additive manufactured parts as a function of the heat flux.more »In our forthcoming research we will focus on validating the model in the context of the laser powder bed fusion process.

    « less
  2. Introduction Multi-series CT (MSCT) scans, including non-contrast CT (NCCT), CT Perfusion (CTP), and CT Angiography (CTA), are widely used in acute stroke imaging. While each scan has its advantage in disease diagnosis, the varying image resolution of different series hinders the ability of the radiologist to discern subtle suspicious findings. Besides, higher image quality requires high radiation doses, leading to increases in health risks such as cataract formation and cancer induction. Thus, it is highly crucial to develop an approach to improve MSCT resolution and to lower radiation exposure. Hypothesis MSCT imaging of the same patient is highly correlated in structural features, the transferring and integration of the shared and complementary information from different series are beneficial for achieving high image quality. Methods We propose TL-GAN, a learning-based method by using Transfer Learning (TL) and Generative Adversarial Network (GAN) to reconstruct high-quality diagnostic images. Our TL-GAN method is evaluated on 4,382 images collected from nine patients’ MSCT scans, including 415 NCCT slices, 3,696 CTP slices, and 271 CTA slices. We randomly split the nine patients into a training set (4 patients), a validation set (2 patients), and a testing set (3 patients). In preprocessing, we remove the background and skullmore »and visualize in brain window. The low-resolution images (1/4 of the original spatial size) are simulated by bicubic down-sampling. For training without TL, we train different series individually, and for with TL, we follow the scanning sequence (NCCT, CTP, and CTA) by finetuning. Results The performance of TL-GAN is evaluated by the peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) index on 184 NCCT, 882 CTP, and 107 CTA test images. Figure 1 provides both visual (a-c) and quantity (d-f) comparisons. Through TL-GAN, there is a significant improvement with TL than without TL (training from scratch) for NCCT, CTP, and CTA images, respectively. These significances of performance improvement are evaluated by one-tailed paired t-tests (p < 0.05). We enlarge the regions of interest for detail visual comparisons. Further, we evaluate the CTP performance by calculating the perfusion maps, including cerebral blood flow (CBF) and cerebral blood volume (CBV). The visual comparison of the perfusion maps in Figure 2 demonstrate that TL-GAN is beneficial for achieving high diagnostic image quality, which are comparable to the ground truth images for both CBF and CBV maps. Conclusion Utilizing TL-GAN can effectively improve the image resolution for MSCT, provides radiologists more image details for suspicious findings, which is a practical solution for MSCT image quality enhancement.« less
  3. Purpose There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM. Design/methodology/approach The printability assessment framework integrates analytical thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework. Findings Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature. Originality/value Although many literature studies investigatemore »process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties.« less
  4. Laboratory testing is an integral tool in the management of patient care in hospitals, particularly in intensive care units (ICUs). There exists an inherent trade-off in the selection and timing of lab tests between considerations of the expected utility in clinical decision-making of a given test at a specific time, and the associated cost or risk it poses to the patient. In this work, we introduce a framework that learns policies for ordering lab tests which optimizes for this trade-off. Our approach uses batch off-policy reinforcement learning with a composite reward function based on clinical imperatives, applied to data that include examples of clinicians ordering labs for patients. To this end, we develop and extend principles of Pareto optimality to improve the selection of actions based on multiple reward function components while respecting typical procedural considerations and prioritization of clinical goals in the ICU. Our experiments show that we can estimate a policy that reduces the frequency of lab tests and optimizes timing to minimize information redundancy. We also find that the estimated policies typically suggest ordering lab tests well ahead of critical onsets—such as mechanical ventilation or dialysis—that depend on the lab results. We evaluate our approach by quantifyingmore »how these policies may initiate earlier onset of treatment.« less
  5. Hyperspectral imaging technologies have shown great promise for biomedical applications. These techniques have been especially useful for detection of molecular events and characterization of cell, tissue, and biomaterial composition. Unfortunately, hyperspectral imaging technologies have been slow to translate to clinical devices – likely due to increased cost and complexity of the technology as well as long acquisition times often required to sample a spectral image. We have demonstrated that hyperspectral imaging approaches which scan the fluorescence excitation spectrum can provide increased signal strength and faster imaging, compared to traditional emission-scanning approaches. We have also demonstrated that excitation-scanning approaches may be able to detect spectral differences between colonic adenomas and adenocarcinomas and normal mucosa in flash-frozen tissues. Here, we report feasibility results from using excitation-scanning hyperspectral imaging to screen pairs of fresh tumoral and nontumoral colorectal tissues. Tissues were imaged using a novel hyperspectral imaging fluorescence excitation scanning microscope, sampling a wavelength range of 360-550 nm, at 5 nm increments. Image data were corrected to achieve a NIST-traceable flat spectral response. Image data were then analyzed using a range of supervised and unsupervised classification approaches within ENVI software (Harris Geospatial Solutions). Supervised classification resulted in >99% accuracy for single-patient image data,more »but only 64% accuracy for multi-patient classification (n=9 to date), with the drop in accuracy due to increased false-positive detection rates. Hence, initial data indicate that this approach may be a viable detection approach, but that larger patient sample sizes need to be evaluated and the effects of inter-patient variability studied.« less