skip to main content

Title: Exploring the Mysteries of System-Level Test
Abstract—System-level test, or SLT, is an increasingly important process step in today’s integrated circuit testing flows. Broadly speaking, SLT aims at executing functional workloads in operational modes. In this paper, we consolidate available knowledge about what SLT is precisely and why it is used despite its considerable costs and complexities. We discuss the types or failures covered by SLT, and outline approaches to quality assessment, test generation and root-cause diagnosis in the context of SLT. Observing that the theoretical understanding for all these questions has not yet reached the level of maturity of the more conventional structural and functional test methods, we outline new and promising directions for methodical developments leveraging on recent findings from software engineering.
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
2020 IEEE Asian Test Symposium
Page Range or eLocation-ID:
1 to 6
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditional low cost scan based structural tests no longer suffice for delivering acceptable defect levels in many processor SOCs, especially those targeting low power applications. Expensive functional system level tests (SLTs) have become an additional and necessary final test screen. Efforts to eliminate or minimize the use of SLTs have focused on new fault models and improved test generation methods to improve the effectiveness of scan tests. In this paper we argue that given the limitations of scan timing tests, such an approach may not be sufficient to detect all the low voltage failures caused by circuit timing variability that appear to dominate SLT fallout. Instead, we propose an alternate approach for meaningful cost savings that adaptively avoids SLT tests for a subset of the manufactured parts. This is achieved by using parametric and scan tests results from earlier in the test flow to identify low delay variability parts that can avoid SLT with minimal impact on DPPM. Extensive SPICE simulations support the viability of our proposed approach. We also show that such an adaptive test flow is also very well suited to real time optimization during the using machine-learning techniques.
  2. Hardware verification of modern electronic systems has been identified as a major bottleneck due to the increasing complexity and time-to-market constraints. One of the major objectives in hardware verification is to drastically reduce the validation and debug time without sacrificing the design quality. Assertion-based verification is a promising avenue for efficient hardware validation and debug. In this paper, we provide a comprehensive survey of recent progress in assertion-based hardware verification. Specifically, we outline how to define assertions using temporal logic to specify expected behaviors in different abstraction levels. Next, we describe state-of-the art approaches for automated generation of assertions. We also discuss test generation techniques for activating assertions to ensure that the generated assertions are valid. Finally, we present both pre-silicon and post-silicon assertion-based validation approaches that utilize simulation, formal methods as well as hybrid techniques. We conclude with a discussion on utilizing assertions for verifying both functional and non-functional requirements.
  3. While a significant amount of work has been done on the commonly used, tightly -constrained weather-based, German sign language (GSL) dataset, little has been done for continuous sign language translation (SLT) in more realistic settings, including American sign language (ASL) translation. Also, while CNN - based features have been consistently shown to work well on the GSL dataset, it is not clear whether such features will work as well in more realistic settings when there are more heterogeneous signers in non-uniform backgrounds. To this end, in this work, we introduce a new, realistic phrase-level ASL dataset (ASLing), and explore the role of different types of visual features (CNN embeddings, human body keypoints, and optical flow vectors) in translating it to spoken American English. We propose a novel Transformer-based, visual feature learning method for ASL translation. We demonstrate the explainability efficacy of our proposed learning methods by visualizing activation weights under various input conditions and discover that the body keypoints are consistently the most reliable set of input features. Using our model, we successfully transfer-learn from the larger GSL dataset to ASLing, resulting in significant BLEU score improvements. In summary, this work goes a long way in bringing together the AImore »resources required for automated ASL translation in unconstrained environments.« less
  4. Research on floral volatiles has grown substantially in the last 20 years, which has generated insights into their diversity and prevalence. These studies have paved the way for new research that explores the evolutionary origins and ecological consequences of different types of variation in floral scent, including community-level, functional, and environmentally induced variation. However, to address these types of questions, novel approaches are needed that can handle large sample sizes, provide quality control measures, and make volatile research more transparent and accessible, particularly for scientists without prior experience in this field. Drawing upon a literature review and our own experiences, we present a set of best practices for next-generation research in floral scent. We outline methods for data collection (experimental designs, methods for conducting field collections, analytical chemistry, compound identification) and data analysis (statistical analysis, database integration) that will facilitate the generation and interpretation of quality data. For the intermediate step of data processing, we created the R package bouquet , which provides a data analysis pipeline. The package contains functions that enable users to convert chromatographic peak integrations to a filtered data table that can be used in subsequent statistical analyses. This package includes default settings for filtering outmore »non-floral compounds, including background contamination, based on our best-practice guidelines, but functions and workflows can be easily customized as necessary. Next-generation research into the ecology and evolution of floral scent has the potential to generate broadly relevant insights into how complex traits evolve, their genomic architecture, and their consequences for ecological interactions. In order to fulfill this potential, the methodology of floral scent studies needs to become more transparent and reproducible. By outlining best practices throughout the lifecycle of a project, from experimental design to statistical analysis, and providing an R package that standardizes the data processing pipeline, we provide a resource for new and seasoned researchers in this field and in adjacent fields, where high-throughput and multi-dimensional datasets are common.« less
  5. Abstract

    Cooperative 3D printing (C3DP) is a novel approach to additive manufacturing, where multiple mobile 3D printing robots work together cooperatively to print the desired part. At the core of C3DP lies the chunk-based printing strategy. This strategy splits the desired part into smaller chunks, and then the chunks are assigned and scheduled to be printed by individual printing robots. In our previous work, we presented various hardware and software components of C3DP, such as mobile 3D printers, chunk-based slicing, scheduling, and simulation. In this study, we present a fully integrated and functional C3DP platform with all necessary components, including chunker, slicer, scheduler, printing robots, build floor, and outline how they work in unison from a system-level perspective. To realize C3DP, new developments of both hardware and software are presented, including new chunking approaches, scalable scheduler for multiple robots, SCARA-based printing robots, a mobile platform for transporting printing robots, modular floor tiles, and a charging station for the mobile platform. Finally, we demonstrate the capability of the system using two case studies. In these demonstrations, a CAD model of a part is fed to the chunker, divided into smaller chunks, passed to the scheduler, and assigned and scheduled to bemore »printed by the scheduler with a given number of robots. The slicer generates G-code for each of the chunks and combines G-code into one file for each robot. The simulator then uses the G-code generated by the slicer to generate animations for visualization purposes.

    « less