skip to main content

Search for: All records

Award ID contains: 1910964

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract—System-level test, or SLT, is an increasingly important process step in today’s integrated circuit testing flows. Broadly speaking, SLT aims at executing functional workloads in operational modes. In this paper, we consolidate available knowledge about what SLT is precisely and why it is used despite its considerable costs and complexities. We discuss the types or failures covered by SLT, and outline approaches to quality assessment, test generation and root-cause diagnosis in the context of SLT. Observing that the theoretical understanding for all these questions has not yet reached the level of maturity of the more conventional structural and functional test methods, we outline new and promising directions for methodical developments leveraging on recent findings from software engineering.
  2. Abstract—Recent advances in process technology have resulted in novel defect mechanisms making the test generation process very challenging. In addition to complete opens and shorts that can be represented via extreme defect resistance magnitudes, partial resistive opens and shorts are also of concern in deeply scaled CMOS technologies. For open defects with intermediate defect magnitude values, it has been shown that multi-pattern tests are necessary for defect exposure. We extend this approach to short defects with intermediate defect magnitude values to obtain a suite of multi-pattern tests for standard cell instances that cover complete as well as partial intra-cell open and short defects. A hierarchical scan-compatible SAT-based test generation approach for full scan sequential circuits is then proposed that allows such multi-pattern tests to be applied to the circuit via the scan infrastructure. A key innovation is the combined use of shift and capture operations along with launch-on-capture and launch-on- shift scan based test application for increased defect coverage. Resulting defect coverage improvements over conventional two-pattern tests are demonstrated on ISCAS89 benchmark circuits.
  3. null (Ed.)
    The recycling of used integrated circuits (ICs) has raised serious problems in ensuring the integrity of today's globalized semiconductor supply chain. This poses a serious threat to critical infrastructure due to potentially shorter lifetime, lower reliability, and poorer performance from these counterfeit new chips. Recently, we have proposed a highly effective approach for detecting such chips by exploiting the power-up state of on-chip SRAMs. Due to the symmetry of the memory array layout, an equal number of cells power-up to the 0 and 1 logic states in a new unused SRAM; this ratio gets skewed in time due to uneven NBTI aging from normal usage in the field. Although this solution is very effective in detecting recycled ICs, its applicability is somewhat limited as a large number older designs do not have large on-chip memories. In this paper, we propose an alternate approach based on the initial power-up state of scan flip-flops, which are present in virtually every digital circuit. Since the flip-flops, unlike SRAM cells, are generally not perfectly symmetrical in layout, an equal number of scan cells will not power-up to 0 or 1 logic states in most designs. Consequently, a stable time zero reference of 50% logicmore »0s and 1s cannot be used for determining the subsequent usage of a chip. To overcome this key limitation, we propose a novel solution in this paper that reliably identifies used ICs from testing the part alone, without the need for any additional reference data or even the netlist of the circuit. Through scan testing of the IC, we first identify a significant number of asymmetrically stressed flip-flops in the design, divided into two groups. One group of flip-flops is selected such that it mostly experiences the 1 logic state during functional operation, while the other group mostly experiences the 0 state. The resulting differential stress during operation causes growing disparity over time in the number of 0s (and 1s) observed in these two groups at power-up. When new and unaged, these two groups behave similarly, with similar percentage of 1s (or 0s). However, over time the differential stress makes these counts diverge. We show that this changing count can be a measure of operational aging. Our simulation results show that it is possible to reliably detect used ICs after as little as three months of operation.« less
  4. Traditional low cost scan based structural tests no longer suffice for delivering acceptable defect levels in many processor SOCs, especially those targeting low power applications. Expensive functional system level tests (SLTs) have become an additional and necessary final test screen. Efforts to eliminate or minimize the use of SLTs have focused on new fault models and improved test generation methods to improve the effectiveness of scan tests. In this paper we argue that given the limitations of scan timing tests, such an approach may not be sufficient to detect all the low voltage failures caused by circuit timing variability that appear to dominate SLT fallout. Instead, we propose an alternate approach for meaningful cost savings that adaptively avoids SLT tests for a subset of the manufactured parts. This is achieved by using parametric and scan tests results from earlier in the test flow to identify low delay variability parts that can avoid SLT with minimal impact on DPPM. Extensive SPICE simulations support the viability of our proposed approach. We also show that such an adaptive test flow is also very well suited to real time optimization during the using machine-learning techniques.