skip to main content

Title: Emoji-Powered Representation Learning for Cross-Lingual Sentiment Classification
Sentiment classification typically relies on a large amount of labeled data. In practice, the availability of labels is highly imbalanced among different languages, e.g., more English texts are labeled than texts in any other languages, which creates a considerable inequality in the quality of related information services received by users speaking different languages. To tackle this problem, cross-lingual sentiment classification approaches aim to transfer knowledge learned from one language that has abundant labeled examples (i.e., the source language, usually English) to another language with fewer labels (i.e., the target language). The source and the target languages are usually bridged through off-the-shelf machine translation tools. Through such a channel, cross-language sentiment patterns can be successfully learned from English and transferred into the target languages. This approach, however, often fails to capture sentiment knowledge specific to the target language, and thus compromises the accuracy of the downstream classification task. In this paper, we employ emojis, which are widely available in many languages, as a new channel to learn both the cross-language and the language-specific sentiment patterns. We propose a novel representation learning method that uses emoji prediction as an instrument to learn respective sentiment-aware representations for each language. The learned representations are more » then integrated to facilitate cross-lingual sentiment classification. The proposed method demonstrates state-of-the-art performance on benchmark datasets, which is sustained even when sentiment labels are scarce. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
WWW '19: The World Wide Web Conference
Page Range or eLocation-ID:
251 - 262
Sponsoring Org:
National Science Foundation
More Like this
  1. International dark web platforms operating within multiple geopolitical regions and languages host a myriad of hacker assets such as malware, hacking tools, hacking tutorials, and malicious source code. Cybersecurity analytics organizations employ machine learning models trained on human-labeled data to automatically detect these assets and bolster their situational awareness. However, the lack of human-labeled training data is prohibitive when analyzing foreign-language dark web content. In this research note, we adopt the computational design science paradigm to develop a novel IT artifact for cross-lingual hacker asset detection(CLHAD). CLHAD automatically leverages the knowledge learned from English content to detect hacker assets in non-English dark web platforms. CLHAD encompasses a novel Adversarial deep representation learning (ADREL) method, which generates multilingual text representations using generative adversarial networks (GANs). Drawing upon the state of the art in cross-lingual knowledge transfer, ADREL is a novel approach to automatically extract transferable text representations and facilitate the analysis of multilingual content. We evaluate CLHAD on Russian, French, and Italian dark web platforms and demonstrate its practical utility in hacker asset profiling, and conduct a proof-of-concept case study. Our analysis suggests that cybersecurity managers may benefit more from focusing on Russian to identify sophisticated hacking assets. In contrast, financialmore »hacker assets are scattered among several dominant dark web languages. Managerial insights for security managers are discussed at operational and strategic levels.« less
  2. In recent years great success has been achieved in sentiment classification for English, thanks in part to the availability of copious annotated resources. Unfortunately, most languages do not enjoy such an abundance of labeled data. To tackle the sentiment classification problem in low-resource languages without adequate annotated data, we propose an Adversarial Deep Averaging Network (ADAN) to transfer the knowledge learned from labeled data on a resource-rich source language to low-resource languages where only unlabeled data exist. ADAN has two discriminative branches: a sentiment classifier and an adversarial language discriminator. Both branches take input from a shared feature extractor to learn hidden representations that are simultaneously indicative for the classification task and invariant across languages. Experiments on Chinese and Arabic sentiment classification demonstrate that ADAN significantly outperforms state-of-the-art systems.
  3. Modern NLP applications have enjoyed a great boost utilizing neural networks models. Such deep neural models, however, are not applicable to most human languages due to the lack of annotated training data for various NLP tasks. Cross-lingual transfer learning (CLTL) is a viable method for building NLP models for a low-resource target language by leveraging labeled data from other (source) languages. In this work, we focus on the multilingual transfer setting where training data in multiple source languages is leveraged to further boost target language performance. Unlike most existing methods that rely only on language-invariant features for CLTL, our approach coherently utilizes both language invariant and language-specific features at instance level. Our model leverages adversarial networks to learn language-invariant features, and mixture-of-experts models to dynamically exploit the similarity between the target language and each individual source language1. This enables our model to learn effectively what to share between various languages in the multilingual setup. Moreover, when coupled with unsupervised multilingual embeddings, our model can operate in a zero-resource setting where neither target language training data nor cross-lingual resources are available. Our model achieves significant performance gains over prior art, as shown in an extensive set of experiments over multiple textmore »classification and sequence tagging.« less
  4. Cross-lingual transfer is an effective way to build syntactic analysis tools in low-resource languages. However, transfer is difficult when transferring to typologically distant languages, especially when neither annotated target data nor parallel corpora are available. In this paper, we focus on methods for cross-lingual transfer to distant languages and propose to learn a generative model with a structured prior that utilizes labeled source data and unlabeled target data jointly. The parameters of source model and target model are softly shared through a regularized log likelihood objective. An invertible projection is employed to learn a new interlingual latent embedding space that compensates for imperfect crosslingual word embedding input. We evaluate our method on two syntactic tasks: part-ofspeech (POS) tagging and dependency parsing. On the Universal Dependency Treebanks, we use English as the only source corpus and transfer to a wide range of target languages. On the 10 languages in this dataset that are distant from English, our method yields an average of 5.2% absolute improvement on POS tagging and 8.3% absolute improvement on dependency parsing over a direct transfer method using state-of-the-art discriminative models.
  5. Cross-lingual transfer learning has become an important weapon to battle the unavailability of annotated resources for low-resource languages. One of the fundamental techniques to transfer across languages is learning language-agnostic representations, in the form of word embeddings or contextual encodings. In this work, we propose to leverage unannotated sentences from auxiliary languages to help learning language-agnostic representations. Specifically, we explore adversarial training for learning contextual encoders that produce invariant representations across languages to facilitate cross-lingual transfer. We conduct experiments on cross-lingual dependency parsing where we train a dependency parser on a source language and transfer it to a wide range of target languages. Experiments on 28 target languages demonstrate that adversarial training significantly improves the overall transfer performances under several different settings. We conduct a careful analysis to evaluate the language-agnostic representations resulted from adversarial training.