skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Throughput bound minimization for random access channel assignment
Throughput extremization is an important facet of performance modeling for low-power wide-area network (LP-WAN) wireless networks (e.g., LoRaWAN) as it provides insight into the best and worst case behavior of the network. Our previous work on throughput extremization established lower and upper bounds on throughput for random access channel assignment over a collision erasure channel in which the lower bound is expressed in terms of the number of radios and sum load on each channel. In this paper the lower bound is further characterized by identifying two local minimizers (a load balanced assignment and an imbalanced assignment) where the decision variables are the number of radios assigned to each channel and the total load on each channel. A primary focus is to characterize how macro-parameters of the optimization, i.e., the total number of radios, their total load, and the minimum load per radio, determine the regions under which each of the local minimizers is in fact the global minimizer.  more » « less
Award ID(s):
1816387
PAR ID:
10355782
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the load-balancing design for forwarding incoming flows to access points (APs) in high-density wireless networks with both channel fading and flow-level dynamics, where each incoming flow has a certain amount of service demand and leaves the system once its service request is complete. The efficient load-balancing design is strongly needed for supporting high-quality wireless connections in high-density areas. In this work, we propose a Joint Load-Balancing and Scheduling (JLBS) Algorithm that always forwards the incoming flows to the AP with the smallest workload in the presence of flow-level dynamics and each AP always serves the flow with the best channel quality. Our analysis reveals that our proposed JLBS Algorithm not only achieves maximum system throughput, but also minimizes the total system workload in the heavy-traffic regime. Moreover, we observe from both our theoretical and simulation results that the mean total workload performance under the proposed JLBS Algorithm does not degrade as the number of APs increases, which is strongly desirable in high-density wireless networks. 
    more » « less
  2. Dispatching systems, where arriving jobs are immediately assigned to one of multiple queues, are ubiquitous in computer systems and service systems. A natural and practically relevant model is one in which each queue serves jobs in FCFS (First-Come First-Served) order. We consider the case where the dispatcher is size-aware, meaning it learns the size (i.e. service time) of each job as it arrives; and state-aware, meaning it always knows the amount of work (i.e. total remaining service time) at each queue. While size- and state-aware dispatching to FCFS queues has been extensively studied, little is known about optimal dispatching for the objective of minimizing mean delay. A major obstacle is that no nontrivial lower bound on mean delay is known, even in heavy traffic (i.e. the limit as load approaches capacity). This makes it difficult to prove that any given policy is optimal, or even heavy-traffic optimal. In this work, we propose the first size- and state-aware dispatching policy that provably minimizes mean delay in heavy traffic. Our policy, called CARD (Controlled Asymmetry Reduces Delay), keeps all but one of the queues short, then routes as few jobs as possible to the one long queue. We prove an upper bound on CARD's mean delay, and we prove the first nontrivial lower bound on the mean delay of any size- and state-aware dispatching policy. Both results apply to any number of servers. Our bounds match in heavy traffic, implying CARD's heavy-traffic optimality. In particular, CARD's heavy-traffic performance improves upon that of LWL (Least Work Left), SITA (Size Interval Task Assignment), and other policies from the literature whose heavy-traffic performance is known. 
    more » « less
  3. Oblivious routing has a long history in both the theory and practice of networking. In this work we initiate the formal study of oblivious routing in the context of reconfigurable networks, a new architecture that has recently come to the fore in datacenter networking. These networks allow a rapidly changing bounded-degree pattern of interconnections between nodes, but the network topology and the selection of routing paths must both be oblivious to the traffic demand matrix. Our focus is on the trade-off between maximizing throughput and minimizing latency in these networks. For every constant throughput rate, we characterize (up to a constant factor) the minimum latency achievable by an oblivious reconfigurable network design that satisfies the given throughput guarantee. The trade-off between these two objectives turns out to be surprisingly subtle: the curve depicting it has an unexpected scalloped shape reflecting the fact that load-balancing becomes more difficult when the average length of routing paths is not an integer because equalizing all the path lengths is not possible. The proof of our lower bound uses LP duality to verify that Valiant load balancing is the most efficient oblivious routing scheme when used in combination with an optimally-designed reconfigurable network topology. The proof of our upper bound uses an algebraic construction in which the network nodes are identified with vectors over a finite field, the network topology is described by either the elementary basis or a sequence of Vandermonde matrices, and routing paths are constructed by selecting columns of these matrices to yield the appropriate mixture of path lengths within the shortest possible time interval. 
    more » « less
  4. We study the optimal design of a heterogeneous coded elastic computing (CEC) network where machines have varying relative computation speeds. CEC introduced by Yang et al. is a framework which mitigates the impact of elastic events, where machines join and leave the network. A set of data is distributed among storage constrained machines using a Maximum Distance Separable (MDS) code such that any subset of machines of a specific size can perform the desired computations. This design eliminates the need to re-distribute the data after each elastic event. In this work, we develop a process for an arbitrary heterogeneous computing network to minimize the overall computation time by defining an optimal computation load, or number of computations assigned to each machine. We then present an algorithm to define a specific computation assignment among the machines that makes use of the MDS code and meets the optimal computation load. 
    more » « less
  5. This paper studies the “age of information” in a general multi-source multi-hop wireless network with explicit channel contention. Specifically, the scenario considered in this paper assumes that each node in the network is both a source and a monitor of information, that all nodes wish to receive fresh status updates from all other nodes in the network, and that only one node can transmit in each time slot. Lower bounds for peak and average age of information are derived and expressed in terms of fundamental graph properties including the connected domination number. An algorithm to generate near-optimal periodic status update schedules based on sequential optimal flooding is also developed. These schedules are analytically shown to exactly achieve the peak age bound and also achieve the average age bound within an additive gap scaling linearly with the size of the network. Moreover, the results are sufficiently general to apply to any connected network topology. Illustrative numerical examples are presented which serve to verify the analysis for several canonical network topologies of arbitrary size, as well as every connected network with nine or fewer nodes. 
    more » « less