skip to main content


Title: Magnetohydrodynamic levitation for high-performance flexible pumps
We use magnetohydrodynamic levitation as a means to create a soft, elastomeric, solenoid-driven pump (ESP). We present a theoretical framework and fabrication of a pump designed to address the unique challenges of soft robotics, maintaining pumping performance under deformation. Using a permanent magnet as a piston and ferrofluid as a liquid seal, we model and construct a deformable displacement pump. The magnet is driven back and forth along the length of a flexible core tube by a series of solenoids made of thin conductive wire. The magnet piston is kept concentric within the tube by Maxwell stresses within the ferrofluid and magnetohydrodynamic levitation, as viscous lift pressure is created due to its forward velocity. The centering of the magnet reduces shear stresses during pumping and improves efficiency. We provide a predictive model and capture the transient nonlinear dynamics of the magnet during operation, leading to a parametric performance curve characterizing the ESP, enabling goal-driven design. In our experimental validation, we report a shut-off pressure of 2 to 8 kPa and run-out flow rate of 50 to 320 mL⋅min −1 , while subject to deformation of its own length scale, drawing a total of 0.17 W. This performance leads to the highest reported duty point (i.e., pressure and flow rate provided under load) for a pump that operates under deformation of its own length scale. We then integrate the pump into an elastomeric chassis and squeeze it through a tortuous pathway while providing continuous fluid pressure and flow rate; the vehicle then emerges at the other end and propels itself swimming.  more » « less
Award ID(s):
1830924
NSF-PAR ID:
10355850
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
29
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pumps are critical life-sustaining components for all animals. At the earliest stages of life, the tubular embryonic heart works as a valveless pump capable of generating unidirectional blood flow. Inspired by this elementary pump, we developed an example of a biohybrid valveless pump-bot powered by engineered skeletal muscle. Our pump-bot consists of a soft hydrogel tube connected at both ends to a stiffer polydimethylsiloxane (PDMS) scaffold, creating an impedance mismatch. A contractile muscle ring wraps around the hydrogel tube at an off-center location, squeezing the tube with or without buckling it locally. Cyclic muscle contractions, spontaneous or electrically stimulated, further squeeze the tube, resulting in elastic waves that propagate along the soft tube and get reflected back at the soft/stiff tube boundaries. Asymmetric placement of muscle ring results in a time delay between the wave arrivals, thus establishing a net unidirectional fluid flow irrespective of whether the tube is buckled or not. Flow rates of up to 22.5 μL/min are achieved by the present pump-bot, which are at least three orders of magnitude higher than those from cardiomyocyte-powered valve pumps of similar size. Owning to its simple geometry, robustness, ease of fabrication, and high pumping performance, our pump-bot is particularly well-suited for a wide range of biomedical applications in microfluidics, drug delivery, biomedical devices, cardiovascular pumping system, and more.

     
    more » « less
  2. Liebau pump is a tubular, non-peristaltic, pulsatile pump capable of creating unidirectional flow in the absence of valves. It requires asymmetrical positioning of the pincher relative to the attachment sites of its elastic segment to the rest of the circuit. Biological feasibility of such valveless pumps remains a hotly debated topic. To test the feasibility of the Liebau-based pumping in vessels with biologically relevant properties we quantified the output of Liebau pumps with their compliant segments made of a silicone rubber that mimicked the Young modulus of soft tissues. The lengths, the inner diameters, thicknesses of the tested compliant segments ranged from 1 to 5 cm, 3 to 8 mm and 0.3 to 1 mm, respectively. The compliant segment of the setup was compressed at 0.5–2.5 Hz frequencies using a 3.5-mm-wide rectangular piston. A nearest-neighbor tracking algorithm was used to track movements of 0.5-mm carbon particles within the system. The viscosity of the aqueous solution was varied by increased percentage of glycerin. Measurements yielded quantitative relationships between viscosity, frequency of compression and the net flowrate. The use of the Liebau principle of valveless pumping in conjunction with physiologically sized vessel and contraction frequencies yields flowrates comparable to peristaltic pumps of the same dimensions. We conclude that the data confirm physiological feasibility of Liebau-based pumping and warrant further testing of its mechanism using excised biological conduits or tissue engineered components. Such biomimetic pumps can serve as energy-efficient flow generators in microdevices or to study the function of embryonic heart during its normal development or in diseased states. 
    more » « less
  3. null (Ed.)
    Soft pneumatic actuators have found many applications in robotics and adaptive structures. Traditionally, these actuators are constructed by wrapping layers of reinforcing helical fibers around an elastomeric tube. This approach is versatile and robust, but it suffers from a critical disadvantage: cumbersome fabrication procedures. Wrapping long helical filaments around a cylindrical tube requires expensive equipment or excessive manual labor. To address this issue, we propose a new approach towards designing and constructing pneumatic actuators by exploiting the principle of kirigami, the ancient art of paper cutting. More specifically, we use “kirigami skins” — plastic sleeves with carefully arranged slit cuts — to replace the reinforcing helical fibers. This paper presents an initial investigation on a set of linear extension actuators featuring kirigami skins with a uniform array of cross-shaped, orthogonal cuts. When under internal pressurization, the rectangular-shaped facets defined by these cuts can rotate and induce the desired extension motion. Through extensive experiments, we analyze the elastic and plastic deformations of these kirigami skins alone under tension. The results show strongly nonlinear behaviors involving both in-plane facet rotation the out-of-plane buckling. Such a deformation pattern offers valuable insights into the actuator’s performance under pressure. Moreover, both the deformation characteristics and actuation performance are “programmable” by tailoring the cut geometry. This study lays down the foundation for constructing more capable Kirigami-skinned soft actuators that can achieve sophisticated motions. 
    more » « less
  4. Abstract Tissue-engineered living machines is an emerging discipline that employs complex interactions between living cells and engineered scaffolds to self-assemble biohybrid systems for diverse scientific research and technological applications. Here, we report an adaptive, autonomous biohybrid pumping machine with flow loop feedback powered by engineered living muscles. The tissue is made from skeletal muscle cells (C2C12) and collagen I/Matrigel matrix, which self-assembles into a ring that compresses a soft hydrogel tube connected at both ends to a rigid fluidic platform. The muscle ring contracts in a repetitive fashion autonomously squeezing the tube, resulting in an impedance pump. The resulting flow is circulated back to the muscle ring forming a feedback loop, which allows the pump to respond to the cues received from the flow it generates and adaptively manage its pumping performances based on the feedback. The developed biohybrid pumping system may have broad utility and impact in health, medicine and bioengineering. 
    more » « less
  5. Fault friction is central to understanding earthquakes, yet laboratory rock mechanics experiments are restricted to, at most, meter scale. Questions thus remain as to the applicability of measured frictional properties to faulting in situ. In particular, the slip-weakening distance d c strongly influences precursory slip during earthquake nucleation, but scales with fault roughness and is challenging to extrapolate to nature. The 2018 eruption of Kīlauea volcano, Hawaii, caused 62 repeatable collapse events in which the summit caldera dropped several meters, accompanied by M W 4.7 to 5.4 very long period (VLP) earthquakes. Collapses were exceptionally well recorded by global positioning system (GPS) and tilt instruments and represent unique natural kilometer-scale friction experiments. We model a piston collapsing into a magma reservoir. Pressure at the piston base and shear stress on its margin, governed by rate and state friction, balance its weight. Downward motion of the piston compresses the underlying magma, driving flow to the eruption. Monte Carlo estimation of unknowns validates laboratory friction parameters at the kilometer scale, including the magnitude of steady-state velocity weakening. The absence of accelerating precollapse deformation constrains d c to be ≤ 10 mm, potentially much less. These results support the use of laboratory friction laws and parameters for modeling earthquakes. We identify initial conditions and material and magma-system parameters that lead to episodic caldera collapse, revealing that small differences in eruptive vent elevation can lead to major differences in eruption volume and duration. Most historical basaltic caldera collapses were, at least partly, episodic, implying that the conditions for stick–slip derived here are commonly met in nature. 
    more » « less