Reionization leads to large spatial fluctuations in the intergalactic temperature that can persist well after its completion. We study the imprints of such fluctuations on the $z$ ∼ 5 Ly α forest flux power spectrum using a set of radiation-hydrodynamic simulations that model different reionization scenarios. We find that large-scale coherent temperature fluctuations bring ${\sim}20\text{--}60{{\ \rm per\ cent}}$ extra power at k ∼ 0.002 s km−1, with the largest enhancements in the models where reionization is extended or ends the latest. On smaller scales (k ≳ 0.1 s km−1), we find that temperature fluctuations suppress power by ${\lesssim}10{{\ \rm per\ cent}}$. We find that the shape of the power spectrum is mostly sensitive to the reionization mid-point rather than temperature fluctuations from reionization’s patchiness. However, for all of our models with reionization mid-points of $z$ ≤ 8 ($z$ ≤ 12), the shape differences are ${\lesssim}20{{\ \rm per\ cent}}$ (${\lesssim}40{{\ \rm per\ cent}}$) because of a surprisingly well-matched cancellation between thermal broadening and pressure smoothing that occurs for realistic thermal histories. We also consider fluctuations in the ultraviolet background, finding their impact on the power spectrum to be much smaller than temperature fluctuations at k ≳ 0.01 s km−1. Furthermore, we compare our models to power spectrummore »
This content will become publicly available on August 1, 2023
Impact of the electron density and temperature gradient on drift-wave turbulence in the Large Plasma Device
In this paper we present an experimental study of edge turbulence in the Large Plasma Device at UCLA. We utilize a scan of discharge power and prefill pressure (neutral density) to show experimentally that turbulent density fluctuations decrease with decreasing density gradient, as predicted for resistive drift-wave turbulence (RDWT). As expected for RDWT, we observe that the cross-phase between the density and potential fluctuations is close to 0. Moreover, the addition of an electron temperature gradient leads to a reduction in the amplitude of the density fluctuations, as expected for RDWT. However, counter to theoretical expectations, we find that the potential fluctuations do not follow the same trends as the density fluctuations for changes either in density gradients or the addition of a temperature gradient. The disconnect between the density and potential fluctuations is connected to changes in the parallel flows as a result of differences in the prefill pressure, i.e. neutral density. Further analysis of the density and potential fluctuation spectra show that the electron temperature gradient reduces the low frequency fluctuations up to $10 \,{\rm kHz}$ and the introduction of a temperature gradient leads to an unexpected ${\sim }{\rm \pi}$ shift of the density–potential cross-phase at ${\sim }10\,{\rm more »
- Award ID(s):
- 2144099
- Publication Date:
- NSF-PAR ID:
- 10356048
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 88
- Issue:
- 4
- ISSN:
- 0022-3778
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The performance of different versions of the discrete random walk models in turbulent flows with nonuniform normal root-mean-square (RMS) velocity fluctuations and turbulence time scales were carefully investigated. The OpenFOAM v2−f low Reynolds number turbulence model was used for evaluating the fully developed streamwise velocity and the wall-normal RMS velocity fluctuations profiles in a turbulent channel flow. The results were then used in an in-house matlab particle tracking code, including the drag and Brownian forces, and the trajectories of randomly injected point-particles with diameters ranging from 10 nm to 30 μm were evaluated under the one-way coupling assumption. The distributions and deposition velocities of fluid-tracer and finite-size particles were evaluated using the conventional-discrete random walk (DRW) model, the modified-DRW model including the velocity gradient drift correction, and the new improved-DRW model including the velocity and time gradient drift terms. It was shown that the conventional-DRW model leads to superfluous migration of fluid-point particles toward the wall and erroneous particle deposition rate. The concentration profiles of tracer particles obtained by using the modified-DRW model still are not uniform. However, it was shown that the new improved-DRW model with the velocity and time scale drift corrections leads to uniform distributions for fluid-point particlesmore »
-
All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixingmore »
-
Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K.more »
-
:Chaosong Huang, Gang Lu (Ed.)A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of meso-scale and small-scale structure of the subauroral geospace, connecting ionospheric structures to plasma wave processes in the turbulent plasmasphere boundary layer (TPBL). Free energy for plasma waves comes from diamagnetic electron and ion currents in the entry layer near the plasma sheet boundary and near the TPBL inner boundary, respectively, and anisotropic distributions of energetic ions inside the TPBL and interior to the inner boundary. Collisionless heating of the plasmaspheric particles gives downward heat and suprathermal electron fluxes sufficient to provide the F-region electron temperature greater than 6000 K. This leads to the formation of specific density troughs in the ionospheric regions in the absence of strong electric fields and upward plasma flows. Small-scale MHD wave structures (SAPSWS) and irregular density troughs emerge on the duskside, coincident with the substorm current wedge development. Numerical simulations show that the ionospheric feedback instability significantly contributes to the SAPSWS formation. Antiparallel temperature and density gradients inside the subauroral troughs lead to the temperature gradient instability. The latter and the gradient-drift instability lead to enhanced decameter-scale irregularities responsible for subauroral HF radar backscatter