skip to main content


Title: The honeycomb of engineering framework: Philosophy of engineering guiding precollege engineering education
Award ID(s):
2131097
NSF-PAR ID:
10356522
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
111
Issue:
1
ISSN:
1069-4730
Page Range / eLocation ID:
19 to 39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Involvement in professional disciplinary engineering student organizations (PDESOs) positively influences engineering students’ college experience. While extensive research about engineering student societies and organizations has demonstrated various benefits for students, few studies explore professional disciplinary engineering student societies and organizations that provide unique opportunities tailored around specific engineering disciplines. To better understand how participation in PDESOs influences engineering undergraduates, we conducted an exploratory study, interviewing thirteen mechanical engineering undergraduates with six months to three years of experience with PDESOs. The overarching conceptual framework is derived from a combination of motivated identity construction theory and engineering identity, allowing us to see how participation in these organizations contributes to students’ engineering identity and professional development. Participants indicated that involvement in PDESOs provided unique professional development opportunities that enhanced their self-esteem and efficacy and provided a welcoming environment where they experienced a sense of belonging. These results demonstrate that participation in PDESOs contributes to professional development, interpersonal skills, and community engagement, preparing them for the engineering workforce, which contributes to a strengthened engineering identity.

     
    more » « less
  2. Access to lower-division engineering courses in the community college substantially influences whether or not community college students pursue and successfully achieve an engineering degree. With about 60% of students from under-represented minority (URM) groups beginning their post-secondary education in the community colleges, providing this access is critical if the US is to diversify and expand its engineering workforce. Still many community college lack the faculty, equipment, or local expertise to offer a comprehensive transfer engineering program, thus compromising participation in engineering courses for underrepresented groups as well as for students residing in rural and remote areas, where distance is a key barrier to post-secondary enrollment. An additional obstacle to participation is the need for so many community college students to work, many in inflexible positions that compromise their ability to attend traditional face-to-face courses. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. This paper focuses on the development and testing of the teaching and learning resources for Introduction to Engineering, a three-unit course (two units of lecture and one unit of lab). The course has special significance as a gateway course for students who without the role models that their middle class peers so often have readily available enter college with very limited awareness of the exciting projects and fulfilling careers the engineering profession offers as well as with apprehension about their ability to succeed in a demanding STEM curriculum. To this end, the course covers academic success skills in engineering including mindset and metacognition, academic pathways, career awareness and job functions in the engineering profession, team building and communications, the engineering design process, and a broad range of fundamental and engaging topics and projects in engineering including electronics, basic test equipment, programming in MATLAB and Arduino, robotics, bridge design, and materials science. The paper presents the results of a pilot implementation of the teaching materials in a regular face-to-face course which will be used to inform subsequent on-line delivery. Additionally, student surveys and interviews are used to assess students’ perceptions of the effectiveness of the course resources, along with their sense of self-efficacy and identity as aspiring engineers. 
    more » « less
  3. Community college engineering transfer programs prepare a significant fraction of the graduates from university engineering programs, yet face challenges from a fragmented lower division engineering core curriculum, limited scheduling options for students, and sometimes marginal enrollment patterns. In addition, most small college programs are run by one permanent faculty, making it difficult to provide lower-division engineering courses with the breadth and frequency needed for effective and timely transfer preparation. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses. These courses can be delivered either completely online, or with limited face-to-face interactions. This paper presents the development and testing of the teaching and learning resources for an online Engineering Circuits Laboratory class, a one-unit laboratory course offered alongside the circuit theory course, which is already available in an online format. The class materials cover the use of basic instrumentation (DMM, Oscilloscope), analysis and interpretation of experimental data, circuit simulation, use of MATLAB to solve circuit equations in the real and complex domain, and exposure to the Arduino microcontroller. A systems approach to selected topics is also introduced as a way to contextualize student exposure to the material. The paper presents the results of the pilot and a second implementation of the curriculum, as well as a comparison of the outcomes of the online course with those from a regular, face-to-face course. Additionally, student surveys and interviews are used to determine student perceptions of the course resources, student use of these resources, and overall satisfaction with the course. 
    more » « less