The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this article presents an open-source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations.
more »
« less
E-transit-bench: simulation platform for analyzing electric public transit bus fleet operations
When electrified transit systems make grid aware choices, improved social welfare is achieved by scheduling charging at low grid impact locations and times causing reduced loss, minimal power quality issues and reduced grid stress. Electrifying transit fleet has numerous challenges like non availability of buses during charging, varying charging costs, etc., that are related the electric grid behavior. However, transit systems do not have access to the information about the co-evolution of the grid’s power flow and therefore cannot account for the power grid’s needs in its day to day operation. In this paper we propose a framework of transportation-grid co-simulation analyzing the spatio-temporal interaction between the transit operations with electric buses and the power distribution grid. Real-world data for a day’s traffic from Chattanooga city’s transit system is simulated in SUMO and integrated with a realistic distribution grid simulation (using GridLAB-D) to understand the grid impact due to the transit electrification. Charging information is obtained from the transportation simulation to feed into grid simulation to assess the impact of charging. We also discuss the impact to the grid with higher degree of Transit electrification that further necessitates such an integrated Transportation-Grid co-simulation to operate the integrated system optimally. Our future work includes extending the platform for optimizing the charging and trip assignment operations.
more »
« less
- PAR ID:
- 10356662
- Date Published:
- Journal Name:
- Proceedings of the Thirteenth ACM International Conference on Future Energy Systems (e-Energy 2022)
- Page Range / eLocation ID:
- 532 to 541
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this paper presents an open- source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations.more » « less
-
The integration of electric vehicles (EVs) into the electric power distribution system poses numerous challenges and opportunities for optimizing energy management and system operations. Electric vehicle grid interfaces (EVGIs), essentially bidirectional power converters, allow for charging/grid-to-vehicle (G2V) and discharging/vehicle-to-grid (V2G) power transfers. A power dispatch estimation (PDE) model for V2G, based on availability of EVs in a distribution system and capabilities of the distribution system, is needed to assist in grid operations. This paper presents the development of a PDE model based on nodal power flows to capture the complex spatiotemporal dependencies inherent in G2V and V2G patterns. The hierarchical structure of a distribution system, feeder to EVGI node, is taken into consideration for PDE. Typical PDE estimation results are presented for the IEEE 34 test node feeder distribution system allocated with EVGIs.more » « less
-
Abstract Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship.more » « less
-
The development of new technologies is increasing transportation electrification and electric vehicles (EVs) are expected to become even more popular in coming years. High EV adoption rates can increase the potential to use EVs as an energy resource and operate in vehicle-to-grid (V2G) and vehicle-to-home (V2H). This paper focuses on the resilience analysis of using EVs and roof-top solar photovoltaic systems (PVs) to provide power support in network microgrids (MGs) experiencing an outage due to extreme weather conditions. To determine the effectiveness of using EVs and PVs as backup energy resources, a set of resilience metrics are evaluated for different cases and duration. Simulation results show that the management of EVs and PVs in residential networked MGs could provide power support for several hours during the restoration of a distribution system experiencing an outage.more » « less
An official website of the United States government

