The number of smart home IoT (Internet of Things) devices has been growing fast in recent years. Along with the great benefits brought by smart home devices, new threats have appeared. One major threat to smart home users is the compromise of their privacy by traffic analysis (TA) attacks. Researchers have shown that TA attacks can be performed successfully on either plain or encrypted traffic to identify smart home devices and infer user activities. Tunneling traffic is a very strong countermeasure to existing TA attacks. However, in this work, we design a Signature based Tunneled Traffic Analysis (STTA) attack that can be effective even on tunneled traffic. Using a popular smart home traffic dataset, we demonstrate that our attack can achieve an 83% accuracy on identifying 14 smart home devices. We further design a simple defense mechanism based on adding uniform random noise to effectively protect against our TA attack without introducing too much overhead. We prove that our defense mechanism achieves approximate differential privacy.
more »
« less
WiFi-based IoT Devices Profiling Attack based on Eavesdropping of Encrypted WiFi Traffic
Recent research has shown that in-network observers of WiFi communication (i.e., observers who have joined the WiFi network) can obtain much information regarding the types, user identities, and activities of Internet-of-Things (IoT) devices in the network. What has not been explored is the question of how much information can be inferred by an out-of-network observer who does not have access to the WiFi network. This attack scenario is more realistic and much harder to defend against, thus imposes a real threat to user privacy. In this paper, we investigate privacy leakage derived from an out-of-network traffic eavesdropper on the encrypted WiFi traffic of popular IoT devices. We instrumented a testbed of 12 popular IoT devices and evaluated multiple machine learning methods for fingerprinting and inferring what IoT devices exist in a WiFi network. By only exploiting the WiFi frame header information, we have achieved 95% accuracy in identifying the devices and often their working status. This study demonstrates that information leakage and privacy attack is a real threat for WiFi networks and IoT applications.
more »
« less
- Award ID(s):
- 1915780
- NSF-PAR ID:
- 10356981
- Date Published:
- Journal Name:
- 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)
- Page Range / eLocation ID:
- 385 to 392
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, the ubiquity of mobile devices leads to an increasing demand of public network services, e.g., WiFi hot spots. As a part of this trend, modern transportation systems are equipped with public WiFi devices to provide Internet access for passengers as people spend a large amount of time on public transportation in their daily life. However, one of the key issues in public WiFi spots is the privacy concern due to its open access nature. Existing works either studied location privacy risk in human traces or privacy leakage in private networks such as cellular networks based on the data from cellular carriers. To the best of our knowledge, none of these work has been focused on bus WiFi privacy based on large-scale real-world data. In this paper, to explore the privacy risk in bus WiFi systems, we focus on two key questions how likely bus WiFi users can be uniquely re-identified if partial usage information is leaked and how we can protect users from the leaked information. To understand the above questions, we conduct a case study in a large-scale bus WiFi system, which contains 20 million connection records and 78 million location records from 770 thousand bus WiFi users during a two-month period. Technically, we design two models for our uniqueness analyses and protection, i.e., a PB-FIND model to identify the probability a user can be uniquely re-identified from leaked information; a PB-HIDE model to protect users from potentially leaked information. Specifically, we systematically measure the user uniqueness on users' finger traces (i.e., connection URL and domain), foot traces (i.e., locations), and hybrid traces (i.e., both finger and foot traces). Our measurement results reveal (i) 97.8% users can be uniquely re-identified by 4 random domain records of their finger traces and 96.2% users can be uniquely re-identified by 5 random locations on buses; (ii) 98.1% users can be uniquely re-identified by only 2 random records if both their connection records and locations are leaked to attackers. Moreover, the evaluation results show our PB-HIDE algorithm protects more than 95% users from the potentially leaked information by inserting only 1.5% synthetic records in the original dataset to preserve their data utility.more » « less
-
With an increasing number of Internet of Things (IoT) devices present in homes, there is a rise in the number of potential infor- mation leakage channels and their associated security threats and privacy risks. Despite a long history of attacks on IoT devices in unprotected home networks, the problem of accurate, rapid detection and prevention of such attacks remains open. Many existing IoT protection solutions are cloud-based, sometimes ineffective, and might share consumer data with unknown third parties. This paper investigates the potential for effective IoT threat detection locally, on a home router, using AI tools combined with classic rule-based traffic-filtering algorithms. Our results show that with a slight rise of router hardware resources caused by machine learn- ing and traffic filtering logic, a typical home router instrumented with our solution is able to effectively detect risks and protect a typical home IoT network, equaling or outperforming existing popular solutions, with- out any effects on benign IoT functionality, and without relying on cloud services and third parties.more » « less
-
User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This paper supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV and thermostat, etc. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep learning based user authentication scheme to accurately identify each individual user. Extensive experiments in two typical indoor environments, a university office and an apartment, are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% and 91% authentication accuracy with 11 subjects through walking and stationary activities, respectively.more » « less
-
Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the wide deployments of Internet-of-things (IoT) in smart homes. As IoT devices often directly interact with the users and environments, this paper studies if and how we could explore the collective insights from multiple heterogeneous IoT devices to infer user activities for home safety monitoring and assisted living. Specifically, we develop a new system, namely IoTMosaic, to first profile diverse user activities with distinct IoT device event sequences, which are extracted from smart home network traffic based on their TCP/IP data packet signatures. Given the challenges of missing and out-of-order IoT device events due to device malfunctions or varying network and system latencies, IoTMosaic further develops simple yet effective approximate matching algorithms to identify user activities from real-world IoT network traffic. Our experimental results on thousands of user activities in the smart home environment over two months show that our proposed algorithms can infer different user activities from IoT network traffic in smart homes with the overall accuracy, precision, and recall of 0.99, 0.99, and 1.00, respectively.more » « less