skip to main content

Title: Which cross fields can be quadrangulated?: global parameterization from prescribed holonomy signatures
We describe a method for the generation of seamless surface parametrizations with guaranteed local injectivity and full control over holonomy. Previous methods guarantee only one of the two. Local injectivity is required to enable these parametrizations' use in applications such as surface quadrangulation and spline construction. Holonomy control is crucial to enable guidance or prescription of the parametrization's isocurves based on directional information, in particular from cross-fields or feature curves, and more generally to constrain the parametrization topologically. To this end we investigate the relation between cross-field topology and seamless parametrization topology. Leveraging previous results on locally injective parametrization and combining them with insights on this relation in terms of holonomy, we propose an algorithm that meets these requirements. A key component relies on the insight that arbitrary surface cut graphs, as required for global parametrization, can be homeomorphically modified to assume almost any set of turning numbers with respect to a given target cross-field.  more » « less
Award ID(s):
1835712 1652515 1901091
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Page Range / eLocation ID:
1 to 12
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves. 
    more » « less
  2. Rothkopf, A. ; Brambilla, N. ; Andersen, J.O. ; Kurkela, A. ; Röhrich, D. ; Tolos, L. ; Tranberg, A. ; Tywoniuk, K. (Ed.)
    We report on the recent progress on the computation of the doubly heavy baryon spectrum in effective field theory. The effective field theory is built upon the heavy-quark mass and adiabatic expansions. The potentials can be expressed as NRQCD Wilson loops with operator insertions. These are nonperturbative objects and so far only the one corresponding to the static potential has been computed with lattice QCD. We review the proposal for a parametrization of the potentials based in an interpolation between the shortand long-distance regimes. The long-distance description is obtained with a newly proposed Effective String Theory which coincides with the previous ones for pure gluodynamics but it is extended to contain a fermion field. We show the doubly heavy baryon spectrum with hyperfine contributions obtained using these parametrizations for the hyperfine potentials. 
    more » « less
  3. Abstract

    Previous high-resolution angle-resolved photoemission (ARPES) studies of URu2Si2have characterized the temperature-dependent behavior of narrow-band states close to the Fermi level (EF) at low photon energies near the zone center, with an emphasis on electronic reconstruction due to Brillouin zone folding. A substantial challenge to a proper description is that these states interact with other hole-band states that are generally absent from bulk-sensitive soft x-ray ARPES measurements. Here we provide a more globalk-space context for the presence of such states and their relation to the bulk Fermi surface (FS) topology using synchrotron-based wide-angle and photon energy-dependent ARPES mapping of the electronic structure using photon energies intermediate between the low-energy regime and the high-energy soft x-ray regime. Small-spot spatial dependence,f-resonant photoemission, Si 2pcore-levels, x-ray polarization, surface-dosing modification, and theoretical surface slab calculations are employed to assist identification of bulk versus surface state character of theEF-crossing bands and their relation to specific U- or Si-terminations of the cleaved surface. The bulk FS topology is critically compared to density functional theory (DFT) and to dynamical mean field theory calculations. In addition to clarifying some aspects of the previously measured high symmetry Γ,ZandXpoints, incommensurate 0.6a* nested Fermi-edge states located alongZNZare found to be distinctly different from the DFT FS prediction. The temperature evolution of these states aboveTHO, combined with a more detailed theoretical investigation of this region, suggests a key role of theN-point in the hidden order transition.

    more » « less
  4. Nonlinear topological insulators have garnered substantial recent attention as they have both enabled the discovery of new physics due to interparticle interactions, and may have applications in photonic devices such as topological lasers and frequency combs. However, due to the local nature of nonlinearities, previous attempts to classify the topology of nonlinear systems have required significant approximations that must be tailored to individual systems. Here, we develop a general framework for classifying the topology of nonlinear materials in any discrete symmetry class and any physical dimension. Our approach is rooted in a numerical K-theoretic method called the spectral localizer, which leverages a real-space perspective of a system to define local topological markers and a local measure of topological protection. Our nonlinear spectral localizer framework yields a quantitative definition of topologically non-trivial nonlinear modes that are distinguished by the appearance of a topological interface surrounding the mode. Moreover, we show how the nonlinear spectral localizer can be used to understand a system's topological dynamics, i.e., the time-evolution of nonlinearly induced topological domains within a system. We anticipate that this framework will enable the discovery and development of novel topological systems across a broad range of nonlinear materials 
    more » « less
  5. Abstract

    Rainfall prediction by weather forecasting models is strongly dependent on the microphysical parametrization being utilized within the model. As forecasting models have become more advanced, they are more commonly using double‐moment bulk microphysical parametrizations. While these double‐moment schemes are more sophisticated and require fewera prioriparameters than single‐moment parametrizations, a number of parameter values must still be fixed for quantities that are not Prognosed or diagnosed. Two such parameters, the width of the rain drop size distribution and the choice of collection efficiencies between liquid hydrometeors, are examined here. Simulations of deep convective storms were performed in which the collection efficiency dataset and thea prioriwidth of the rain drop size distribution (RSD) were individually and simultaneously modified. Analysis of the results show that thea prioriwidth of the RSD was a larger control on the total accumulated precipitation (a change of up to 75% over the typical values tested in this article) than the choice of collection efficiency dataset used (a change of up to 10%). Changing the collection efficiency dataset produces most of the impacts on precipitation rates through changes in the warm rain process rates. On the other hand, the decrease in precipitation with narrowing RSDs occurs in association with the following processes: (a) decreased rain production due to increased evaporation, (b) decreased rain production due to decreased ice melting, and (c) slower raindrop fall speed which leads to longer residency times and changes in rain self‐collection. These results add to the growing body of work showing that the representation of hydrometeor size distributions is critically important, and suggests that more work should be done to better represent the width of the RSD in models, including further development of triple‐moment and bin schemes.

    more » « less