skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DEF: deep estimation of sharp geometric features in 3D shapes
We propose Deep Estimators of Features (DEFs), a learning-based framework for predicting sharp geometric features in sampled 3D shapes. Differently from existing data-driven methods, which reduce this problem to feature classification, we propose to regress a scalar field representing the distance from point samples to the closest feature line on local patches. Our approach is the first that scales to massive point clouds by fusing distance-to-feature estimates obtained on individual patches. We extensively evaluate our approach against related state-of-the-art methods on newly proposed synthetic and real-world 3D CAD model benchmarks. Our approach not only outperforms these (with improvements in Recall and False Positives Rates), but generalizes to real-world scans after training our model on synthetic data and fine-tuning it on a small dataset of scanned data. We demonstrate a downstream application, where we reconstruct an explicit representation of straight and curved sharp feature lines from range scan data. We make code, pre-trained models, and our training and evaluation datasets available at https://github.com/artonson/def.  more » « less
Award ID(s):
1901091 1835712 1652515
PAR ID:
10357187
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
41
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Manually annotating complex scene point cloud datasets is both costly and error-prone. To reduce the reliance on labeled data, we propose a snapshot-based self-supervised method to enable direct feature learning on the unlabeled point cloud of a complex 3D scene. A snapshot is defined as a collection of points sampled from the point cloud scene. It could be a real view of a local 3D scan directly captured from the real scene, or a virtual view of such from a large 3D point cloud dataset. First the snapshots go through a self-supervised pipeline including both part contrasting and snapshot clustering for feature learning. Then a weakly-supervised approach is implemented by training a standard SVM classifier on the learned features with a small fraction of labeled data. We evaluate the weakly-supervised approach for point cloud classification by using varying numbers of labeled data and study the minimal numbers of labeled data for a successful classification. Experiments are conducted on three public point cloud datasets, and the results have shown that our method is capable of learning effective features from the complex scene data without any labels. 
    more » « less
  2. We introduce RGB2Point, an unposed single-view RGB image to a 3D point cloud generation based on Transformer. RGB2Point takes an input image of an object and generates a dense 3D point cloud. Contrary to prior works based on CNN layers and diffusion-denoising approaches, we use pre-trained Transformer layers that are fast and generate high-quality point clouds with consistent quality over available categories. Our generated point clouds demonstrate high quality on a real-world dataset, as evidenced by improved Chamfer distance (51.15%) and Earth Mover’s distance (36.17%) metrics compared to the current state-of the-art. Additionally, our approach shows a better quality on a synthetic dataset, achieving better Chamfer distance (39.26%), Earth Mover’s distance (26.95%), and F-score (47.16%). Moreover, our method produces 63.1% more consistent high-quality results across various object categories compared to prior works. Furthermore, RGB2Point is computationally efficient, requiring only 2.3GB of VRAM to reconstruct a 3D point cloud from a single RGB image, and our implementation generates the results 15,133× faster than a SOTA diffusion-based model. 
    more » « less
  3. We present a novel deep neural network architecture for end-to-end scene flow estimation that directly operates on large-scale 3D point clouds. Inspired by Bilateral Convolutional Layers (BCL), we propose novel DownBCL, UpBCL, and CorrBCL operations that restore structural information from unstructured point clouds, and fuse information from two consecutive point clouds. Operating on discrete and sparse permutohedral lattice points, our architectural design is parsimonious in computational cost. Our model can efficiently process a pair of point cloud frames at once with a maximum of 86K points per frame. Our approach achieves state-of-the-art performance on the FlyingThings3D and KITTI Scene Flow 2015 datasets. Moreover, trained on synthetic data, our approach shows great generalization ability on real-world data and on different point densities without fine-tuning. 
    more » « less
  4. Point processes are becoming very popular in modeling asynchronous sequential data due to their sound mathematical foundation and strength in modeling a variety of real-world phenomena. Currently, they are often characterized via intensity function which limits model’s expressiveness due to unrealistic assumptions on its parametric form used in practice. Furthermore, they are learned via maximum likelihood approach which is prone to failure in multi-modal distributions of sequences. In this paper, we propose an intensity-free approach for point processes modeling that transforms nuisance processes to a target one. Furthermore, we train the model using a likelihood-free leveraging Wasserstein distance between point processes. Experiments on various synthetic and real-world data substantiate the superiority of the proposed point process model over conventional ones. 
    more » « less
  5. Sparse support vector machine (SVM) is a popular classification technique that can simultaneously learn a small set of the most interpretable features and identify the support vectors. It has achieved great successes in many real-world applications. However, for large-scale problems involving a huge number of samples and extremely high-dimensional features, solving sparse SVMs remains challenging. By noting that sparse SVMs induce sparsities in both feature and sample spaces, we propose a novel approach, which is based on accurate estimations of the primal and dual optima of sparse SVMs, to simultaneously identify the features and samples that are guaranteed to be irrelevant to the outputs. Thus, we can remove the identified inactive samples and features from the training phase, leading to substantial savings in both the memory usage and computational cost without sacrificing accuracy. To the best of our knowledge, the proposed method is the first static feature and sample reduction method for sparse SVMs. Experiments on both synthetic and real datasets (e.g., the kddb dataset with about 20 million samples and 30 million features) demonstrate that our approach significantly outperforms state-of-the-art methods and the speedup gained by our approach can be orders of magnitude. 
    more » « less