skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DECOMPOSITION AND RECOMPOSITION STRATEGIES OF PROFESSIONAL ENGINEERING DESIGN TEAMS
Abstract Designers faced with complex design problems use decomposition strategies to tackle manageable sub-problems. Recomposition strategies aims at synthesizing sub-solutions into a unique design proposal. Design theory describes the design process as a combination of decomposition and recomposition strategies. In this paper, we explore dynamic patterns of decomposition and recomposition strategies of design teams. Data were collected from 9 teams of professional engineers. Using protocol analysis, we examined the dominance of decomposition and recomposition strategies over time and the correlations between each strategy and design processes such as analysis, synthesis, evaluation. We expected decomposition strategies to peak early in the design process and decay overtime. Instead, teams maintain decomposition and recomposition strategies consistently during the design process. We observed fast iteration of both strategies over a one hour-long design session. The research presented provides an empirical foundation to model the behaviour of professional engineering teams, and first insights to refine theoretical understanding of the use decomposition and recomposition strategies in design practice.  more » « less
Award ID(s):
1762415 1761774 1463809
PAR ID:
10357410
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Design Society
Volume:
1
ISSN:
2732-527X
Page Range / eLocation ID:
871 to 880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  2. Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We design a new problem type where we present these chunks in a Parsons Problem fashion and asked students to reconstruct the complete solution from the chunks. We incorporated these problems within an intelligent logic tutor and called them Chunky Parsons Problems (CPP). These problems demonstrate the process of problem decomposition to students and require them to pay attention to the decomposed solution while they reconstruct the complete solution. The aim of introducing CPP was to improve students’ problem-solving skills and performance by improving their decomposition-recomposition skills without significantly increasing training difficulty. Our analysis showed that CPPs could be as easy as Worked Examples (WE). And, students who received CPP with simple explanations attached to the chunks had marginally higher scores than those who received CPPs without explanation or did not receive them. Also, the normalized learning gain of these students shifted more towards the positive side than other students. Finally, as we looked into their proof-construction traces in posttest problems, we observed them to form identifiable chunks aligned with those found in historical solutions with higher efficiency. 
    more » « less
  3. The purpose of this work is to investigate the relationship between the disciplinary diversity of capstone design teams and perceptions of success and engineering design abilities. Capstone design programs are effective environments for students to collaborate with industry sponsors on authentic design problems. They provide students with the opportunity to hone their technical and professional skills, often in teams. Previous work has demonstrated that interdisciplinary teams outperform within-discipline teams on complex open-ended tasks, but struggle to communicate across disciplinary boundaries. They also report lower levels of team cohesion and satisfaction with final outcomes. The results of the mixed-methods study conducted with 58 capstone design teams for this paper indicate that team diversity may be inversely related to students’ beliefs in their abilities to construct a prototype. Preliminary qualitative analysis suggests that students tend to divide prototyping tasks based on disciplinary background and struggle to integrate design efforts for complex systems, particularly during later stage design. 
    more » « less
  4. Problem-solving is a critical skill in the workplace, but recent college graduates are often deficient in problem-solving skills. Introductory STEM courses present engineering students with well-structured problems with single-path solutions that do not prepare students with the problem-solving skills they will need to solve complex problems within authentic engineering contexts. When presented with complex problems in authentic contexts, engineering students find it difficult to transfer the scientific knowledge learned in their STEM courses to solve these integrated and ill structured problems. By integrating physics laboratories with engineering design problems, students are taught to apply physics principles to solve ill-structured and complex engineering problems. The integration of engineering design processes to physics labs is meant to help students transfer physics learning to engineering problems, as well as to transfer the design skills learned in their engineering courses to the physics lab. We hypothesize this integration will help students become better problem solvers when they go out to industry after graduation. The purpose of this study is to examine how students transfer their understanding of physics concepts to solve ill-structured engineering problems by means of an engineering design project in a physics laboratory. We use a case-study methodology to examine two cases and analyze the cases using a lens of co-regulated learning and transfer between physics and engineering contexts. Observations were conducted using transfer lenses. That is, we observed groups during the physics labs for evidence of transfer. The research question for this study was, to what extent do students relate physics concepts with concepts from other materials (classes) through an engineering design project incorporated in a physics laboratory? Teams were observed over the course of 6 weeks as they completed the second design challenge. The cases presented in this study were selected using observations from the lab instructors of the team’s work in the first design project. Two teams, one who performed well, and one that performed poorly, were selected to be observed to provide insight on how students use physics concepts to engage in the design process. The second design challenge asked students to design an eco-friendly way of delivering packages of food to an island located in the middle of the river, which is home to critically endangered species. They are given constraints that the solution cannot disrupt the habitat in any way, nor can the animals come into contact directly with humans or loud noises. Preliminary results indicate that both teams successfully demonstrated transfer between physics and engineering contexts, and integrated physics concepts from multiple labs to complete the design project. Teams that struggle seem to be less connected with the design process at the beginning of the project and are less organized. In contrast, teams that are successful demonstrate greater co-regulated learning (communication, reflection, etc.) and focus on making connections between the physics concepts and principles of engineering design from their engineering course work. 
    more » « less
  5. Higher education faces a number of wicked problems, including the inequitable work environment for non-tenure-track faculty (NTTF), that require innovative solutions. This study examines the potential of liberatory design thinking for creating new policies, programs, and practices in higher education, including how the professional bureaucratic environment might shape the design process. Using data from three campuses where changes related to NTTF were successfully implemented, we extend the conceptualization of design thinking toward a model that adapts existing phases of design thinking and identifies new phases where the work of design is particularly influenced by the higher education context. We identify three dimensions that particularly contribute to these differences: politics and power in professional bureaucracies, structural and cultural constraints, and centering equity. This model has practical implications for supporting equity-minded change processes in higher education and may be of particular interest to policymakers, institutional leaders, design teams, and researchers. 
    more » « less