skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A generalized machine learning model for predicting ionic conductivity of ionic liquids
Ionic liquids are currently being considered as potential electrolyte candidates for next-generation batteries and energy storage devices due to their high thermal and chemical stability. However, high viscosity and low conductivity at lower temperatures have severely hampered their commercial applications. To overcome these challenges, it is necessary to develop structure–property models for ionic liquid transport properties to guide the ionic liquid design. This work expands our previous effort in developing a machine learning model on imidazolium-based ionic liquids to now include ten different cation families, representing structural and chemical diversity. The model dataset contains 2869 ionic conductivity values over a temperature range of 238–472 K collected from the NIST ILThermo database and literature values for 397 unique ionic liquids. The database covers 214 unique cations and 68 unique anions. Three machine learning models, namely multiple linear regression, random forest, and extreme gradient boosting are applied to correlate the ionic liquid conductivity data with cation and anion features. Shapely additive analysis is performed to glean insights into cation and anion features with significant impact on ionic conductivity. Finally, the extreme gradient boosting model is used to predict the ionic conductivity of ionic liquids from all the possible combinations of unique cations and anions to identify ionic liquids crossing the ionic conductivity threshold of 2.0 S m −1 .  more » « less
Award ID(s):
1706978
PAR ID:
10357429
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
ISSN:
2058-9689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ionic liquids (ILs) are highly tailorable materials with unique physical and chemical properties that set them apart from conventional organic solvents. As the library of readily accessible ILs continues to grow, so too does their relevance in applications ranging from material processing to electrochemical energy storage as solvents capable of accessing new chemistries disallowed by traditional chemicals. While a great deal of interest has been directed towards imidazolium and quaternary ammonium based ionic liquids, there are other understudied classes of cations which have potentially favorable properties for energy related applications. One such class is that with boronium cations. These cations have a unique structure with a formally negative boron flanked by positive nitrogens. This inherently zwitterionic structure presents interesting possibilities for electrochemical applications. To date only a handful of boronium cation-based ionic liquids have been thoroughly characterized despite exhibiting impressive electrochemical stabilities (> 5.0 V). In the present study we synthesized a series of ILs with novel boronium cations coupled with the bis(trifluoro-methanesulfonyl)imide anion. We then characterized the electrochemical and physical properties of these boronium ionic liquids by techniques such as cyclic voltammetry, broadband dielectric spectroscopy, oscillatory shear rheology, and thermogravimetric analysis. We will discuss how systematic variations in boronium cation structure impacted electrochemical and physical properties. 
    more » « less
  2. his study examined six phosphonium-based room-temperature ionic liquids (PRTILs) having trihexyltetradecyl- or tributyltetradecyl-phosphonium cations with saccharinate, salicylate, or benzoate anions, and obtained a feature parameter to correlate their cationic chain length, anionic ring size, and contact angle with tribological properties. PRTILs with trihexyltetradecyl-phosphonium cations had lower coefficient of friction (COF) and wear than PRTILs with tributyltetradecyl- phosphonium cations, a trend attributed to the additional methylene groups providing lower contact angle. For either cation, PRTILs with the saccharinate anion exhibited much lower COF and wear than single-ring anions, due to the formation of a low-shear-strength-tribofilm facilitated by the double-ring structure and sulfur of saccharinate. Overall, this study revealed PRTIL interfacial mechanisms that can be used to identify anion-cation combinations with optimal tribological performance. 
    more » « less
  3. Organic ionic plastic crystals (OIPCs) are emerging as promising electrolyte materials for solid-state batteries. However, despite the fast ionic diffusion, OIPCs exhibit relatively low DC conductivity in solid phases caused by strong ion-ion correlations that suppress charge transport. To understand the origin of this suppression, we performed a study of ion dynamics in the OIPC 1-Ethyl-1-methylpyrrolidinium bis (trifluoromethyl sulfonyl) imide [P12][TFSI] utilizing dielectric spectroscopy, light scattering, and Nuclear Magnetic Resonance diffusometry. Comparison of the results obtained in this study with the published earlier results on an OIPC with a completely different structure (Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate [P1,2,2,4][PF6]) revealed strong similarities in ion dynamics in both systems. Unlike DC conductivity, which may drop more than ten times between melted and solid phases, diffusion of anions and cations remains high and does not show strong changes at phase transition. The conductivity spectra in the broad frequency range demonstrate unusual shapes in solid phases with an additional step separating fast local ion motions from suppressed long-range charge diffusion controlling DC conductivity. We suggested that in solid phases, anions and cations can jump only between the specific ion sites defined by the crystalline structure. These constraints lead to strong cation-cation and anion-anion correlations strongly suppressing long-range charge transport. 
    more » « less
  4. We used equilibrium and non-equilibrium atomistic simulations to probe the influence of anion chemistry on the true conductivity, dynamical correlations, and ion transport mechanisms in polymeric ionic liquids. An inverse correlation was found between anion self-diffusivities, ionic mobilities, and the anion size for spherical anions. While some larger asymmetric anions had higher diffusivities than smaller spherical anions, their diffusivities and mobilities did not exhibit a direct correlation to the anion volumes. The conductivity and anion dynamical correlations also followed the same trends as displayed by the diffusivity and mobility of anions. All the systems we examined displayed positively correlated motion among anions, suggesting a contribution that enhances the conductivity beyond the ideal Nernst–Einstein value. Analysis of ion transport mechanisms demonstrated very similar hopping characteristics among the spherical anions despite differences in their sizes. 
    more » « less
  5. Abstract The electron-induced secondary electron emission (SEE) yields of imidazolium-based ionic liquids are presented for primary electron beam energies between 30 and 1000 eV. These results are important for understanding plasma synthesis of nanoparticles in plasma discharges with an ionic liquid electrode. Due to their low vapor pressure and high conductivity, ionic liquids can produce metal nanoparticles in low-pressure plasmas through reduction of dissolved metal salts. In this work, the low vapor pressure of ionic liquids is exploited to directly measure SEE yields by bombarding the liquid with electrons and measuring the resulting currents. The ionic liquids studied are [BMIM][Ac], [EMIM][Ac], and [BMIM][BF4]. The SEE yields vary significantly over the energy range, with maximum yields of around 2 at 200 eV for [BMIM][Ac] and [EMIM][Ac], and 1.8 at 250 eV for [BMIM][BF4]. Molecular orbital calculations indicate that the acetate anion is the likely electron donor for [BMIM][Ac] and [EMIM][Ac], while in [BMIM][BF4], the electrons likely originate from the [BMIM]+cation. The differences in SEE yields are attributed to varying ionization potentials and molecular structures of the ionic liquids. These findings are essential for accurate modeling of plasma discharges and understanding SEE mechanisms in ionic liquids. 
    more » « less