skip to main content


Title: Survival of polymeric microstructures subjected to interrogatory touch
Polymeric arrays of microrelief structures have a range of potential applications. For example, to influence wettability, to act as biologically inspired adhesives, to resist biofouling, and to play a role in the “feel” of an object during tactile interaction. Here, we investigate the damage to micropillar arrays comprising pillars of different modulus, spacing, diameter, and aspect ratio due to the sliding of a silicone cast of a human finger. The goal is to determine the effect of these parameters on the types of damage observed, including adhesive failure and ploughing of material from the finger onto the array. Our experiments point to four principal conclusions [1]. Aspect ratio is the dominant parameter in determining survivability through its effect on the bending stiffness of micropillars [2]. All else equal, micropillars with larger diameter are less susceptible to breakage and collapse [3]. The spacing of pillars in the array largely determines which type of adhesive failure occurs in non-surviving arrays [4]. Elastic modulus plays an important role in survivability. Clear evidence of elastic recovery was seen in the more flexible polymer and this recovery led to more instances of pristine survivability where the stiffer polymer tended to ablate PDMS. We developed a simple model to describe the observed bending of micropillars, based on the quasi-static mechanics of beam-columns, that indicated they experience forces ranging from 10 −4 –10 −7 N to deflect into adhesive contact. Taken together, results obtained using our framework should inform design considerations for microstructures intended to be handled by human users.  more » « less
Award ID(s):
1929748
NSF-PAR ID:
10358134
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Kim, Tae-il
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
9
ISSN:
1932-6203
Page Range / eLocation ID:
e0255980
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Slanted high‐aspect‐ratio polymer pillars are studied for their unique properties such as unidirectional spreading of liquid, directional adhesions, or alignment of cells, where the pillars are in constant contact with water or in a humid environment. These pillars, however, tend to cluster upon water evaporation due to the capillary force and lowered modulus of the pillars. Here, spontaneous recovery of clustered slanted hydrogel pillars to their original shape is presented by exploiting the modulus change of hydrogel materials during water evaporation. The clustering and recovery of the slanted hydrogel micropillars are monitored in situ by optical microscopy and environmental scanning electron microscopy. To elucidate sequential clustering and recovery mechanism, the adhesion force between the pillars and the restoring force is compared. Finally, the dynamic change of optical transparency is exploited as the result of switching between clustering and recovery of the slanted micropillars for display. The study of the deformation and recovery of slanted hydrogel pillars will offer insights into geometrical and material designs in water‐based applications.

     
    more » « less
  2. Abstract Objective. The force that an electrocorticography (ECoG) array exerts on the brain manifests when it bends to match the curvature of the skull and cerebral cortex. This force can negatively impact both short-term and long-term patient outcomes. Here we provide a mechanical characterization of a novel liquid crystal polymer (LCP) ECoG array prototype to demonstrate that its thinner geometry reduces the force potentially applied to the cortex of the brain. Approach. We built a low-force flexural testing machine to measure ECoG array bending forces, calculate their effective flexural moduli, and approximate the maximum force they could exerted on the human brain. Main results. The LCP ECoG prototype was found to have a maximal force less than 20% that of any commercially available ECoG arrays that were tested. However, as a material, LCP was measured to be as much as 24× more rigid than silicone, which is traditionally used in ECoG arrays. This suggests that the lower maximal force resulted from the prototype’s thinner profile (2.9×–3.25×). Significance. While decreasing material stiffness can lower the force an ECoG array exhibits, our LCP ECoG array prototype demonstrated that flexible circuit manufacturing techniques can also lower these forces by decreasing ECoG array thickness. Flexural tests of ECoG arrays are necessary to accurately assess these forces, as material properties for polymers and laminates are often scale dependent. As the polymers used are anisotropic, elastic modulus cannot be used to predict ECoG flexural behavior. Accounting for these factors, we used our four-point flexure testing procedure to quantify the forces exerted on the brain by ECoG array bending. With this experimental method, ECoG arrays can be designed to minimize force exerted on the brain, potentially improving both acute and chronic clinical utility. 
    more » « less
  3. Introduction: The mechanical stability of an atheroma fibrous cap (FC) is a crucial factor for the risk of heart attack or stroke in asymptomatic vulnerable plaques. Common determinants of plaque vulnerability are the cap thickness and the presence of micro-calcifications (µCalcs). Higher local stresses have been linked to thin caps(<65µm) and, more recently, our lab demonstrated how µCalcs can potentially initiate cap rupture [1-3]. When combined, these two factors can compromise to a greater extent the stability of the plaque. On this basis, we quantitatively analyzed both individual and combined effects of key determinants of plaque rupture using a tissue damage model on idealized atherosclerotic arteries. Our results were then tested against a diseased human coronary sample. Methods: We performed 28 finite element simulations on three-dimensional idealized atherosclerotic arteries and a human coronary sample. The idealized models present 10% lumen narrowing and 1.25 remodeling index (RI)(Fig.1A). The FC thickness values that we considered were of 50, 100, 150 and 200µm. The human coronary presents a RI=1.31, with 31% lumen occlusion and a 140µm-thick cap(Fig.1B). The human model is based on 6.7μm high-resolution microcomputed tomography (HR-μCT) images. The µCalc has a diameter of 15µm and each artery was expanded up to a systolic pressure of 120mmHg. Layer-specific material properties were de-fined by the HGO model coupled with the hyperelastic failure description proposed by Volokh et al. [4] to repli-cate the rupture of the FC. We considered a max. princi-pal stress for rupture of 545kPa[5]. The lipid core and the µCalc were considered as elastic materials (Ecore = 5kPa, νcore = 0.49; EµCalc= 18,000 kPa, νµCalc=0.3). To obtain a detailed analysis of the cap stresses and rupture progres-sion, a sub-modeling approach was implemented using ABAQUS (Dassault Systemes, v.2019) (Fig. 1). Results: We investigated the quantitative effect of cap thickness and µCalc by simulating tissue failure and de-riving a vulnerability index (VI) for each risk factor. The VI coefficient was defined as the peak cap stress (PCS) normalized by the threshold stress for rupture (545kPa). The relationship between the risk factors and VI was de-termined by deriving the Pearson’s correlation coefficient (PCC) followed by one-tailed t-test (SPSS, IBM, v.25). The null hypothesis was rejected if p<0.05. The presence of the µCalc is the factor that manifests the greater impact on cap stability, leading to at least a 2.5-fold increase in VI and tissue rupture regardless of cap thickness (Fig.2A,B). One µCalc in the cap is the first predictor of vulnerability, with PCCµCalc=0.59 and pµCalc=0.001. Our results also confirm the substantial in-fluence of cap thickness, with an exponential increase in stresses as the cap becomes thinner. The 50µm cap is the only phenotype that ruptures without µCalc (Fig2A). The human sample exhibits PCS levels that are close to the idealized case with 150µm cap and it doesn’t rupture in the absence of the µCalc (PCShuman=233kPa, PCSideal= 252kPa). Conversely, the phenotypes with the µCalc showed an increase in VI of about 2.5 and reached rup-ture under the same blood pressure regime. Conclusions: Our results clearly show the multifactorial nature of plaque vulnerability and the significance of micro-calcifications on the cap mechanical stability. The presence of a μCalc strongly amplifies the stresses in the surrounding tissue, and it can provoke tissue failure even in thick caps that would otherwise be classified as stable. Clearly, plaque phenotypes with a thin cap and μCalcs in the tissue represent the most vulnerable condition. Finally, these observations are well validated by the case of the human atherosclerotic segment, which closely compares to its corresponding idealized model. The novel imple-mentation of the tissue damage description and the defi-nition of a vulnerability index allow one to quantitatively analyze the individual and combined contribution of key determinants of cap rupture, which precedes the for-mation of a thrombus and myocardial infarction. 
    more » « less
  4. The human cost of the COVID-19 pandemic has taken a great toll, and led, around the globe, to a shortage in personal protective equipment (PPE) such as medical exam gloves. To face this shortage and keep themselves and patients safe, many front-line healthcare providers have been overextending the life of PPE. Though not ideal, one pragmatic solution often used is the practice of sanitization and extended use of existing PPE. The data produced by these experiments should help determine an acceptable reusability window of PPE in a working environment, by which the effective use time may be extended and justified. The effect of repeated sanitization, using soap and water, on the mechanical performance was investigated for latex and nitrile elastomeric medical exam gloves. Tensile tests were performed for various manufacturer brands commonly used in the United States (Glovepak Europa, Polymed and Sempersure) and India (Surgiglove). Tensile test samples were prepared for each studied glove and treatment combination. Nitrile gloves were observed to be more uniformly affected by the application of soap and water sanitization than latex gloves. Glovepak Europa nitrile gloves saw significant changes (p≤0.001) in elastic modulus after 5, 10 and 20 treatments losing 31.5%, 42.7% and 49.7%, respectively. Sempersure nitrile gloves also saw significant changes (p≤0.05) in elastic modulus at 5, 10 and 20 treatments losing 44.2%, 34.3% and 45.9%, respectively. Surgiglove nitrile gloves saw a significant loss in elastic modulus of 42.0% (p≤0.001) after 10 treatments. Surgiglove powder free latex showed no significant (p>0.05) change after 10 or 20 repeated treatments using soap and water. Polymed powder free latex showed no significant (p>0.05) change after 10 treatments, but did show a significant (p≤0.05) decrease in elastic modulus by 24.2% after 5 treatments and 25.5% after 20 treatments. Surgiglove powdered latex showed a significant (p≤0.05) increase in elastic modulus by 19.9% after 5 treatments and 15.8% after 10 treatments, while showing no significant (p>0.05) change at 20 treatments. Due to the consistent significant degradation after five repetitions, use of soap and water may not be an adequate sanitization procedure for nitrile gloves, since it would potentially induce premature failure. The latex gloves showed no clear pattern and the results were inconclusive. 
    more » « less
  5. Compressible flow through arrays of circular micro-orifices was experimentally and numerically studied to better understand how the characteristic dimensions of micro-orifices used in macroscale fluidic systems using a plurality of micro-orifices impacts discharge coefficient. The studies were carried out with micro-orifice diameters ranging from 125 μm to 1000 μm, with the number of micro-orifices in an array ranging from 2 to 64, and at gauge inlet pressures ranging from 25 to 600 kPa venting to atmospheric pressure. Results showed `that micro-orifice diameter to thickness aspect ratio and wall profile were significant factors in determining discharge coefficient. The number of micro-orifices in a system was found to have negligible impact on discharge coefficient so long as the micro-orifices were separated by two diameters or more. When this spacing was maintained, two dimensional axisymmetric micro-orifice numerical studies produced discharge coefficients that agreed well with experimental data gathered on three dimensional micro-orifice arrays. The micro-orifice arrays produced discharge coefficients as high as 0.997 using photochemically etched micro-orifices, 0.981 using silicon etched micro-orifices, and 0.831 with drilled micro-orifices. 
    more » « less