skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Survival of polymeric microstructures subjected to interrogatory touch
Polymeric arrays of microrelief structures have a range of potential applications. For example, to influence wettability, to act as biologically inspired adhesives, to resist biofouling, and to play a role in the “feel” of an object during tactile interaction. Here, we investigate the damage to micropillar arrays comprising pillars of different modulus, spacing, diameter, and aspect ratio due to the sliding of a silicone cast of a human finger. The goal is to determine the effect of these parameters on the types of damage observed, including adhesive failure and ploughing of material from the finger onto the array. Our experiments point to four principal conclusions [1]. Aspect ratio is the dominant parameter in determining survivability through its effect on the bending stiffness of micropillars [2]. All else equal, micropillars with larger diameter are less susceptible to breakage and collapse [3]. The spacing of pillars in the array largely determines which type of adhesive failure occurs in non-surviving arrays [4]. Elastic modulus plays an important role in survivability. Clear evidence of elastic recovery was seen in the more flexible polymer and this recovery led to more instances of pristine survivability where the stiffer polymer tended to ablate PDMS. We developed a simple model to describe the observed bending of micropillars, based on the quasi-static mechanics of beam-columns, that indicated they experience forces ranging from 10 −4 –10 −7 N to deflect into adhesive contact. Taken together, results obtained using our framework should inform design considerations for microstructures intended to be handled by human users.  more » « less
Award ID(s):
1929748
PAR ID:
10358134
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Kim, Tae-il
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
9
ISSN:
1932-6203
Page Range / eLocation ID:
e0255980
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective. The force that an electrocorticography (ECoG) array exerts on the brain manifests when it bends to match the curvature of the skull and cerebral cortex. This force can negatively impact both short-term and long-term patient outcomes. Here we provide a mechanical characterization of a novel liquid crystal polymer (LCP) ECoG array prototype to demonstrate that its thinner geometry reduces the force potentially applied to the cortex of the brain. Approach. We built a low-force flexural testing machine to measure ECoG array bending forces, calculate their effective flexural moduli, and approximate the maximum force they could exerted on the human brain. Main results. The LCP ECoG prototype was found to have a maximal force less than 20% that of any commercially available ECoG arrays that were tested. However, as a material, LCP was measured to be as much as 24× more rigid than silicone, which is traditionally used in ECoG arrays. This suggests that the lower maximal force resulted from the prototype’s thinner profile (2.9×–3.25×). Significance. While decreasing material stiffness can lower the force an ECoG array exhibits, our LCP ECoG array prototype demonstrated that flexible circuit manufacturing techniques can also lower these forces by decreasing ECoG array thickness. Flexural tests of ECoG arrays are necessary to accurately assess these forces, as material properties for polymers and laminates are often scale dependent. As the polymers used are anisotropic, elastic modulus cannot be used to predict ECoG flexural behavior. Accounting for these factors, we used our four-point flexure testing procedure to quantify the forces exerted on the brain by ECoG array bending. With this experimental method, ECoG arrays can be designed to minimize force exerted on the brain, potentially improving both acute and chronic clinical utility. 
    more » « less
  2. Abstract Nature has examples of impressive surfaces and interfaces with diverse wettability stemming from superhydrophilicity to superhydrophobicity. The multiscale surface structures found in biological systems generally have high geometric complexity, which makes it challenging to replicate their characteristics, especially using traditional fabrication techniques. It is even more challenging to fabricate such complex microstructures with tunable wettability. In this paper, we propose a method to tune the wettability of a microscale surface by changing the geometrical parameters of embedded microstructures in the surface. By taking inspiration from an insect (springtails), we designed micropillar arrays with different roughness by adjusting geometric parameters such as reentrant angle, pitch distance, and the number of spikes and pillars. This study shows that, by changing geometrical parameters in microscale, the apparent contact angle, and hence the surface wettability can be calibrated. The microscale pillars were fabricated using a precise microdirect light processing (μDLP) three-dimensional (3D) printer. Different printing parameters were studied to optimize the geometric parameters to fabricate 3D hierarchical structures with high accuracy and resolution. The largest apparent contact angle in our experiments is up to 160 deg, with pillars of 0.17 mm height and 0.5 mm diameter, 55 deg reentrant angle, and a spacing of 0.36 mm between pillars. The lowest contact angle is ∼35 deg by reducing the pillar size and spacing. By controlling the size of different features of the pillar, pillar number, and layout of the mushroom-shaped micropillars, the wettability of the surface is possible to be tuned from a highly nonwetting liquid/material combination to highly wetting material. Such wettability tuning capability expands the design space for many biomedical and thermofluidic applications. 
    more » « less
  3. A new approach is reported to fabricate micropillar arrays on transparent surfaces by employing the light‐induced self‐writing technique. A periodic array of microscale optical beams is transmitted through a thin film of photo‐crosslinking acrylate resin. Each beam undergoes self‐lensing associated to photopolymerization‐induced changes in the refractive index of the medium, which counters the beam's natural tendency to diverge over space. As a result, a microscale pillar grows along each beam's propagation path. Concurrent, parallel self‐writing of micropillars leads to the prototyping of micropillar‐based arrays, with the capability to precisely vary the pillar diameter and inter‐spacing. The arrays are spray coated with a thin layer of polytetrafluoroethylene (PTFE) nanoparticles to create large‐area superhydrophobic surfaces with water contact angles greater than 150° and low contact angle hysteresis. High transparency is achieved over the entire range of micropillar arrays explored. The arrays are also mechanically durable and robust against abrasion. This is a scalable, straightforward approach toward structure‐tunable micropillar arrays for functional surfaces and anti‐wetting applications. 
    more » « less
  4. Abstract Self‐healing green thermoset soy protein isolate (SPI) based resins, crosslinked with cinnamaldehyde (CA), were developed. Self‐healing was achieved using elongated microcapsules (MCs) as against spherical MCs that have been used in most earlier studies. MCs containing SPI solution as healant within poly(d,l‐lactide‐co‐glycolide) shells were prepared using Water‐in‐oil‐in‐water (w/o/w) emulsion solvent evaporation (ESE) technique. Process parameters such as sodium tripolyphosphate (STP) and poly(vinyl alcohol) (PVA) concentrations and stirring speed were optimized to obtain elongated MCs. The average aspect ratio of MCs was over four. SPI resins crosslinked with 10% CA (10%CA‐SPI) increased Young's modulus and fracture stress by 54% and 87%, respectively, compared with their noncrosslinked counterpart. The resins containing 15% elongated MCs (15%MC‐10%CA‐SPI) showed self‐healing efficiencies of over 42% in fracture stress and about 35% in toughness recovery, after 24 h of healing. Improvement in self‐healing can be attributed to the high aspect ratio of the MCs that increases the probability of MCs being in the path of the microcracks and releasing the healant. Elongated MCs also contain higher amount of healant than spherical ones of same diameter. Self‐healing resins and composites can not only help prevent their premature failure but also improve their performance as well as service life and safety. 
    more » « less
  5. Compressible flow through arrays of circular micro-orifices was experimentally and numerically studied to better understand how the characteristic dimensions of micro-orifices used in macroscale fluidic systems using a plurality of micro-orifices impacts discharge coefficient. The studies were carried out with micro-orifice diameters ranging from 125 μm to 1000 μm, with the number of micro-orifices in an array ranging from 2 to 64, and at gauge inlet pressures ranging from 25 to 600 kPa venting to atmospheric pressure. Results showed `that micro-orifice diameter to thickness aspect ratio and wall profile were significant factors in determining discharge coefficient. The number of micro-orifices in a system was found to have negligible impact on discharge coefficient so long as the micro-orifices were separated by two diameters or more. When this spacing was maintained, two dimensional axisymmetric micro-orifice numerical studies produced discharge coefficients that agreed well with experimental data gathered on three dimensional micro-orifice arrays. The micro-orifice arrays produced discharge coefficients as high as 0.997 using photochemically etched micro-orifices, 0.981 using silicon etched micro-orifices, and 0.831 with drilled micro-orifices. 
    more » « less