For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes under this metric, and show in particular that between any two distinct points in this space there are continuum many geodesic paths. We also study subspaces of the form [Formula: see text] where [Formula: see text] is closed under Turing equivalence, and show that there is a tight connection between topological properties of such a space and computability-theoretic properties of [Formula: see text]. We then define a distance between Turing degrees based on Hausdorff distance in the metric space [Formula: see text]. We adapt a proof of Monin to show that the Hausdorff distances between Turing degrees that occur are exactly 0, [Formula: see text], and 1, and study which of these values occur most frequently in the senses of Lebesgue measure and Baire category. We define a degree a to be attractive if the class of all degrees at distance [Formula: see text] from a has measure 1, and dispersive otherwise. In particular, we study the distribution of attractive and dispersive degrees. We also study some properties of the metric space of Turing degrees under this Hausdorff distance, in particular the question of which countable metric spaces are isometrically embeddable in it, giving a graph-theoretic sufficient condition for embeddability. Motivated by a couple of issues arising in the above work, we also study the computability-theoretic and reverse-mathematical aspects of a Ramsey-theoretic theorem due to Mycielski, which in particular implies that there is a perfect set whose elements are mutually 1-random, as well as a perfect set whose elements are mutually 1-generic. Finally, we study the completeness of [Formula: see text] from the perspectives of computability theory and reverse mathematics.
more »
« less
On the structure of limiting flocks in hydrodynamic Euler Alignment models
The goal of this paper is to study limiting behavior of a self-organized continuous flock evolving according to the 1D hydrodynamic Euler Alignment model. We provide a series of quantitative estimates that show how far the density of the limiting flock is from a uniform distribution. The key quantity that controls density distortion is the entropy [Formula: see text], and the measure of deviation from uniformity is given by a well-known conserved quantity [Formula: see text], where [Formula: see text] is velocity and [Formula: see text] is the communication operator with kernel [Formula: see text]. The cases of Lipschitz, singular geometric, and topological kernels are covered in the study.
more »
« less
- Award ID(s):
- 1813351
- PAR ID:
- 10358271
- Date Published:
- Journal Name:
- Mathematical Models and Methods in Applied Sciences
- Volume:
- 29
- Issue:
- 13
- ISSN:
- 0218-2025
- Page Range / eLocation ID:
- 2419 to 2431
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider pairs of anti-commuting [Formula: see text]-by-[Formula: see text] Hermitian matrices that are chosen randomly with respect to a Gaussian measure. Generically such a pair decomposes into the direct sum of [Formula: see text]-by-[Formula: see text] blocks on which the first matrix has eigenvalues [Formula: see text] and the second has eigenvalues [Formula: see text]. We call [Formula: see text] the skew spectrum of the pair. We derive a formula for the probability density of the skew spectrum, and show that the elements are repelling.more » « less
-
null (Ed.)Given an element set E of order n, a collection of subsets [Formula: see text], a cost c S on each set [Formula: see text], a covering requirement r e for each element [Formula: see text], and an integer k, the goal of a minimum partial set multicover problem (MinPSMC) is to find a subcollection [Formula: see text] to fully cover at least k elements such that the cost of [Formula: see text] is as small as possible and element e is fully covered by [Formula: see text] if it belongs to at least r e sets of [Formula: see text]. This problem generalizes the minimum k-union problem (MinkU) and is believed not to admit a subpolynomial approximation ratio. In this paper, we present a [Formula: see text]-approximation algorithm for MinPSMC, in which [Formula: see text] is the maximum size of a set in S. And when [Formula: see text], we present a bicriteria algorithm fully covering at least [Formula: see text] elements with approximation ratio [Formula: see text], where [Formula: see text] is a fixed number. These results are obtained by studying the minimum density subcollection problem with (or without) cardinality constraint, which might be of interest by itself.more » « less
-
Magneto-intersubband resistance oscillations (MISOs) of highly mobile 2D electrons in symmetric GaAs quantum wells with two populated subbands are studied in magnetic fields [Formula: see text] tilted from the normal to the 2D electron layer at different temperatures [Formula: see text]. The in-plane component ([Formula: see text]) of the field [Formula: see text] induces magnetic entanglement between subbands, leading to beating in oscillating density of states (DOS) and to MISO suppression. Model of the MISO suppression is proposed. Within the model, a comparison of MISO amplitude in the entangled and disentangled ([Formula: see text]) 2D systems yields both difference frequency of DOS oscillations, [Formula: see text], and strength of the electron–electron interaction, described by parameter [Formula: see text], in the 2D system. These properties are analyzed using two methods, yielding consistent but not identical results for both [Formula: see text] and [Formula: see text]. The analysis reveals an additional angular dependent factor of MISO suppression. The factor is related to spin splitting of quantum levels in magnetic fields.more » « less
-
Motivated by results about “untangling” closed curves on hyperbolic surfaces, Gupta and Kapovich introduced the primitivity and simplicity index functions for finitely generated free groups, [Formula: see text] and [Formula: see text], where [Formula: see text], and obtained some upper and lower bounds for these functions. In this paper, we study the behavior of the sequence [Formula: see text] as [Formula: see text]. Answering a question from [17], we prove that this sequence is unbounded and that for [Formula: see text], we have [Formula: see text]. By contrast, we show that for all [Formula: see text], one has [Formula: see text]. In addition to topological and group-theoretic arguments, number-theoretic considerations, particularly the use of asymptotic properties of the second Chebyshev function, turn out to play a key role in the proofs.more » « less
An official website of the United States government

