skip to main content


Title: A moving eulerian-lagrangian particle method for thin film and foam simulation
We present the Moving Eulerian-Lagrangian Particles (MELP), a novel mesh-free method for simulating incompressible fluid on thin films and foams. Employing a bi-layer particle structure, MELP jointly simulates detailed, vigorous flow and large surface deformation at high stability and efficiency. In addition, we design multi-MELP: a mechanism that facilitates the physically-based interaction between multiple MELP systems, to simulate bubble clusters and foams with non-manifold topological evolution. We showcase the efficacy of our method with a broad range of challenging thin film phenomena, including the Rayleigh-Taylor instability across double-bubbles, foam fragmentation with rim surface tension, recovery of the Plateau borders, Newton black films, as well as cyclones on bubble clusters.  more » « less
Award ID(s):
1919647 2144806
NSF-PAR ID:
10359110
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
41
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Interfacial rheology studies were conducted to establish a connection between the rheological characteristics of particle-laden interfaces and the stability of Pickering foams. The behavior of foams stabilized with fumed and spherical colloidal silica particles was investigated, focusing on foam properties such as bubble microstructure and liquid content. Compared to a sodium dodecyl sulfate-stabilized foam, Pickering foams exhibited a notable reduction in bubble coarsening. Drop shape tensiometry measurements on particle-coated interfaces indicated that the Gibbs stability criterion was satisfied for both particle types at various surface coverages, supporting the observed arrested bubble coarsening in particle-stabilized foams. However, although the overall foam height was similar for both particle types, foams stabilized with fumed silica particles demonstrated a higher resistance to liquid drainage. This difference was attributed to the higher yield strain of interfacial networks formed by fumed silica particles, as compared to those formed by spherical colloidal particles at similar surface pressures. Our findings highlight that while both particles can generate long-lasting foams, the resulting Pickering foams may exhibit variations in microstructure, liquid content, and resistance to destabilization mechanisms, stemming from the respective interfacial rheological properties in each case. 
    more » « less
  2. Abstract

    Polymer foams are cellular solids composed of solid and gas phases, whose mechanical, thermal, and acoustic properties are determined by the composition, volume fraction, and connectivity of both phases. A new high‐throughput additive manufacturing method, referred to as direct bubble writing, for creating polymer foams with locally programmed bubble size, volume fraction, and connectivity is reported. Direct bubble writing relies on rapid generation and patterning of liquid shell–gas core droplets produced using a core–shell nozzle. The printed polymer foams are able to retain their overall shape, since the outer shell of these bubble droplets consist of a low‐viscosity monomer that is rapidly polymerized during the printing process. The transition between open‐ and closed‐cell foams is independently controlled by the gas used, while the foam can be tailored on‐the‐fly by adjusting the gas pressure used to produce the bubble droplets. As exemplars, homogeneous and graded polymer foams in several motifs, including 3D lattices, shells, and out‐of‐plane pillars are fabricated. Conductive composite foams with controlled stiffness for use as soft pressure sensors are also produced.

     
    more » « less
  3. Sodium naphthenates (NaNs), found in crude oils and oil sands process-affected water (OSPW), can act as surfactants and stabilize undesirable foams and emulsions. Despite the critical impact of soap-like NaNs on the formation, properties, and stability of petroleum and OSPW foams, there is a significant lack of studies that characterize foam film drainage, motivating this study. Here, we contrast the drainage of aqueous foam films formulated with NaN with foams containing sodium dodecyl sulfate (SDS), a well-studied surfactant system, in the relatively low concentration regime ( c /CMC < 12.5). The foam films exhibit drainage via stratification, displaying step-wise thinning and coexisting thick–thin regions manifested as distinct shades of gray in reflected light microscopy due to thickness-dependent interference intensity. Using IDIOM (interferometry digital imaging optical microscopy) protocols that we developed, we analyze pixel-wise intensity to obtain thickness maps with high spatiotemporal resolution (thickness <1 nm, lateral ∼500 nm, time ∼10 ms). The analysis of interference intensity variations over time reveals that the aqueous foam films of both SDS and NaN possess an evolving, dynamic, and rich nanoscopic topography. The nanoscopic thickness transitions for stratifying SDS foam films are attributed to the role played by damped supramolecular oscillatory structural disjoining pressure contributed by the confinement-induced layering of spherical micelles. In comparison with SDS, we find smaller concentration-dependent step size and terminal film thickness values for NaN, implying weaker intermicellar interactions and oscillatory structural disjoining pressure with shorter decay length and periodicity. 
    more » « less
  4. null (Ed.)
    We report the discovery of a hitherto unreported mechanism of drainage and rupture of micellar foam films that presents unexplored opportunities for understanding and controlling the stability, lifetime and properties of ubiquitous foams. It is well-known that ultrathin micellar foam films exhibit stratification, manifested as stepwise thinning and coexistence of thin–thick flat regions that differ in thickness by a nanoscopic step size equal to the intermicellar distance. Stratification typically involves the spontaneous formation and growth of thinner, darker, circular domains or thicker, brighter mesas. Mechanistically, domain expansion appears similar to hole growth in polymer films undergoing dewetting by nucleation and growth mechanism that can be described by considering metastable states resulting from a thickness-dependent oscillatory free energy. Dewetting polymer films occasionally phase separate into thick and thin regions forming an interconnected, network-like morphology by undergoing spinodal dewetting. However, the formation of thick–thin spinodal patterns has never been reported for freestanding films. In this contribution, we show that the thickness-dependent oscillatory contribution to free energy that arises due to confinement-induced layering of micelles can drive the formation of such thick-thin regions by undergoing a process we term as spinodal stratification. We visualize and characterize the nanoscopic thickness variations and transitions by using IDIOM (interferometry digital imaging optical microscopy) protocols to obtain exquisite thickness maps of freestanding films. We find that evaporation and enhanced drainage in vertical films play a critical role in driving the process, and spinodal stratification can occur in both single foam films and in bulk foam. 
    more » « less
  5. Underwater explosion poses a significant threat to the structural integrity of ocean vehicles and platforms. Accurate prediction of the dynamic loads from an explosion and the resulting structural response is crucial to ensuring safety without overconservative design. When the distance between the explosive charge and the structure is relatively small (i.e., near-field explosion), the dynamics of the gaseous explosion product, i.e., the “bubble”, comes into play, rendering a multiphysics problem that features the interaction of the bubble, the surrounding liquid water, and the solid structure. The problem is highly nonlinear, as it involves shock waves, large deformation, yielding, contact, and possibly fracture. This paper investigates the two-way interaction between the cyclic expansion and collapse of an explosion bubble and the deformation of a thin-walled elastoplastic cylindrical shell in its vicinity. Intuitively, when a shock wave impinges on a thin cylindrical shell, the shell would collapse in the direction of shock propagation. However, some recent laboratory experiments have shown that under certain conditions the shell collapsed in a counter-intuitive mode in which the direction of collapse is perpendicular to that of shock propagation. In other words, the nearest point on the structural surface moved towards the explosion charge, despite being impacted by a compressive shock. This paper focuses on replicating this phenomenon through numerical simulation and elucidating the underlying mechanisms. A recently developed computational framework (“FIVER”) coupling a nonlinear finite element structural dynamics solver and a finite volume compressible fluid dynamics solver is used to complete this study. The solver utilizes an embedded boundary method to track the wetted surface of the structure (i.e. the fluid-structure interface), which is capable of handling large structural deformation and topological changes (e.g., fracture). The solver also adopts the level set method for tracking the bubble surface (i.e. the liquid-gas interface). The fluid-structure and liquid-gas interface conditions are enforced by constructing and solving one-dimensional multi-material Riemann problems, which naturally accommodates the propagation of shock waves across the interfaces. In this paper, mesh refinement study is made to examine the sensitivity of the results to various meshing parameters. The results show that the intermediate level of refinement is appropriate in terms of both the accuracy and the computation costs. Next, the deformation history of both the bubble and the structure are presented and analyzed to provide a detailed view of the counter-intuitive collapse mode mentioned above. We show that timewise, the structural collapse spans multiple cycles of bubble oscillation. Additional details about the time-histories of fluid pressure, structure displacement, and bubble size are presented to elucidate this dynamic bubble-structure interaction and the resulting structural failure. 
    more » « less