skip to main content


Title: Strong Local Evaporative Cooling Over Land Due to Atmospheric Aerosols
Abstract

Aerosols can enhance terrestrial productivity through increased absorption of solar radiation by the shaded portion of the plant canopy—the diffuse radiation fertilization effect. Although this process can, in principle, alter surface evaporation due to the coupling between plant water loss and carbon uptake, with the potential to change the surface temperature, aerosol‐climate interactions have been traditionally viewed in light of the radiative effects within the atmosphere. Here, we develop a modeling framework that combines global atmosphere and land model simulations with a conceptual diagnostic tool to investigate these interactions from a surface energy budget perspective. Aerosols increase the terrestrial evaporative fraction, or the portion of net incoming energy consumed by evaporation, by over 4% globally and as much as ∼40% regionally. The main mechanism for this is the increase in energy allocation from sensible to latent heat due to global dimming (reduction in global shortwave radiation) and slightly augmented by diffuse radiation fertilization. In regions with moderately dense vegetation (leaf area index >2), the local surface cooling response to aerosols is dominated by this evaporative pathway, not the reduction in incident radiation. Diffuse radiation fertilization alone has a stronger impact on gross primary productivity (+2.18 Pg C y−1or +1.8%) than on land evaporation (+0.18 W m−2or +0.48%) and surface temperature (−0.01 K). Our results suggest that it is important for land surface models to distinguish between quantity (change in total magnitude) and quality (change in diffuse fraction) of radiative forcing for properly simulating surface climate.

 
more » « less
Award ID(s):
1933630
NSF-PAR ID:
10360451
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
13
Issue:
5
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The diffuse radiation fertilization effect—the increase in plant productivity in the presence of higher diffuse radiation (K↓,d)—is an important yet understudied aspect of atmosphere‐biosphere interactions and can modify the terrestrial carbon, energy, and water budgets. TheK↓,dfertilization effect links the carbon cycle with clouds and aerosols, all of which are large sources of uncertainties for our current understanding of the Earth system and for future climate projections. Here we establish to what extent observational and modeling uncertainty in sunlight's diffuse fraction (kd) affects simulated gross primary productivity (GPP) and terrestrial evapotranspiration (λE). We find only 48 eddy covariance sites with simultaneous sufficient measurements ofK↓,dwith none in the tropical climate zone, making it difficult to constrain this mechanism globally using observations. Using a land modeling framework based on the latest version of the Community Land Model, we find that global GPP ranges from 114 Pg C year−1when usingkdforcing from the Modern‐Era Retrospective analysis for Research and Applications, version 2 reanalysis to a ∼7% higher value of 122 Pg C year−1when using the Clouds and the Earth's Radiant Energy System satellite product, with especially strong differences apparent over the tropical region (mean increase ∼9%). The differences inλE, although smaller (−0.4%) due to competing changes in shaded and sunlit leaf transpiration, can be greater than regional impacts of individual forcing agents like aerosols. Our results demonstrate the importance of comprehensively and systematically validating the simulatedkdby atmosphere modules as well as the response to differences inkdwithin land modules across Earth System Models.

     
    more » « less
  2. Abstract

    We show a recent increasing trend in Vapor Pressure Deficit (VPD) over tropical South America in dry months with values well beyond the range of trends due to natural variability of the climate system defined in both the undisturbed Preindustrial climate and the climate over 850–1850 perturbed with natural external forcing. This trend is systematic in the southeast Amazon but driven by episodic droughts (2005, 2010, 2015) in the northwest, with the highest recoded VPD since 1979 for the 2015 drought. The univariant detection analysis shows that the observed increase in VPD cannot be explained by greenhouse-gas-induced (GHG) radiative warming alone. The bivariate attribution analysis demonstrates that forcing by elevated GHG levels and biomass burning aerosols are attributed as key causes for the observed VPD increase. We further show that There is a negative trend in evaporative fraction in the southeast Amazon, where lack of atmospheric moisture, reduced precipitation together with higher incoming solar radiation (~7% decade−1cloud-cover reduction) influences the partitioning of surface energy fluxes towards less evapotranspiration. The VPD increase combined with the decrease in evaporative fraction are the first indications of positive climate feedback mechanisms, which we show that will continue and intensify in the course of unfolding anthropogenic climate change.

     
    more » « less
  3. Abstract. For the radiative impact of individual climate forcings,most previous studies focused on the global mean values at the top of theatmosphere (TOA), and less attention has been paid to surface processes,especially for black carbon (BC) aerosols. In this study, the surface radiativeresponses to five different forcing agents were analyzed by using idealizedmodel simulations. Our analyses reveal that for greenhouse gases, solarirradiance, and scattering aerosols, the surface temperature changes aremainly dictated by the changes of surface radiative heating, but for BC,surface energy redistribution between different components plays a morecrucial role. Globally, when a unit BC forcing is imposed at TOA, the netshortwave radiation at the surface decreases by -5.87±0.67 W m−2 (W m−2)−1 (averaged over global land without Antarctica), which ispartially offset by increased downward longwave radiation (2.32±0.38 W m−2 (W m−2)−1 from the warmer atmosphere, causing a netdecrease in the incoming downward surface radiation of -3.56±0.60 W m−2 (W m−2)−1. Despite a reduction in the downward radiationenergy, the surface air temperature still increases by 0.25±0.08 Kbecause of less efficient energy dissipation, manifested by reduced surfacesensible (-2.88±0.43 W m−2 (W m−2)−1) and latent heat flux(-1.54±0.27 W m−2 (W m−2)−1), as well as a decrease inBowen ratio (-0.20±0.07 (W m−2)−1). Such reductions of turbulentfluxes can be largely explained by enhanced air stability (0.07±0.02 K (W m−2)−1), measured as the difference of the potential temperaturebetween 925 hPa and surface, and reduced surface wind speed (-0.05±0.01 m s−1 (W m−2)−1). The enhanced stability is due to the fasteratmospheric warming relative to the surface, whereas the reduced wind speedcan be partially explained by enhanced stability and reduced Equator-to-poleatmospheric temperature gradient. These rapid adjustments under BC forcingoccur in the lower atmosphere and propagate downward to influence thesurface energy redistribution and thus surface temperature response, whichis not observed under greenhouse gases or scattering aerosols. Our studyprovides new insights into the impact of absorbing aerosols on surfaceenergy balance and surface temperature response. 
    more » « less
  4. Abstract

    Since 2013, Chinese policies have dramatically reduced emissions of particulates and their gas‐phase precursors, but the implications of these reductions for aerosol‐radiation interactions are unknown. Using a global, coupled chemistry‐climate model, we examine how the radiative impacts of Chinese air pollution in the winter months of 2012 and 2013 affect local meteorology and how these changes may, in turn, influence surface concentrations of PM2.5, particulate matter with diameter <2.5 μm. We then investigate how decreasing emissions through 2016 and 2017 alter this impact. We find that absorbing aerosols aloft in winter 2012 and 2013 heat the middle‐ and lower troposphere by ∼0.5–1 K, reducing cloud liquid water, snowfall, and snow cover. The subsequent decline in surface albedo appears to counteract the ∼15–20 W m−2decrease in shortwave radiation reaching the surface due to attenuation by aerosols overhead. The net result of this novel cloud‐snowfall‐albedo feedback in winters 2012–2013 is a slight increase in surface temperature of ∼0.5–1 K in some regions and little change elsewhere. The aerosol heating aloft, however, stabilizes the atmosphere and decreases the seasonal mean planetary boundary layer (PBL) height by ∼50 m. In winter 2016 and 2017, the ∼20% decrease in mean PM2.5weakens the cloud‐snowfall‐albedo feedback, though it is still evident in western China, where the feedback again warms the surface by ∼0.5–1 K. Regardless of emissions, we find that aerosol‐radiation interactions enhance mean surface PM2.5pollution by 10%–20% across much of China during all four winters examined, mainly though suppression of PBL heights.

     
    more » « less
  5. Fire causes abrupt changes in vegetation properties and modifies flux exchanges between land and atmosphere at subseasonal to seasonal scales. Yet these shortterm fire effects on vegetation dynamics and surface energy balance have not been comprehensively investigated in the fire-coupled vegetation model. This study applies the SSiB4/TRIFFID-Fire (the Simplified Simple Biosphere Model coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics with fire) model to study the short-term fire impact in southern Africa. Specifically, we aim to quantify how large impacts fire exerts on surface energy through disturbances on vegetation dynamics, how fire effects evolve during the fire season and the subsequent rainy season, and how surface-darkening effects play a role besides the vegetation change effects. We find fire causes an annual average reduction in grass cover by 4 %–8% for widespread areas between 5–20 S and a tree cover reduction by 1% at the southern periphery of tropical rainforests. The regional fire effects accumulate during June–October and peak in November, the beginning of the rainy season. After the fire season ends, the grass cover quickly returns to unburned conditions, while the tree fraction hardly recovers in one rainy season. The vegetation removal by fire has reduced the leaf area index (LAI) and gross primary productivity (GPP) by 3 %–5% and 5 %–7% annually. The exposure of bare soil enhances surface albedo and therefore decreases the absorption of shortwave radiation. Annual mean sensible heat has dropped by 1.4Wm−2, while the latent heat reduction is small (0.1Wm−2/ due to the evaporation. Surface temperature is increased by as much as 0.33K due to the decrease of sensible heat fluxes, and the warming would be enhanced when the surface-darkening effect is incorporated. Our results suggest that fire effects in grass-dominant areas diminish within 1 year due to the high resilience of grasses after fire. Yet fire effects in the periphery of tropical forests are irreversible within one growing season and can cause large-scale deforestation if accumulated for hundreds of years. 
    more » « less