skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effect of substrate curvature on capacitance and current–voltage characteristics in thin-film transistors on flexible substrates
Abstract Mechanically flexible electronics are devices designed to operate under significant physical deformations such as bending, twisting, and stretching. While the materials systems and devices compatible with flexible substrates have been extensively studied, the mathematical framework for analysis remains identical to that of traditional planar silicon-based electronics. However, the non-planar and dynamic form factors desired from flexible electronics invalidate assumptions made in these models. For electronic devices to be predictable and ultimately commercially viable, they must be understood in any physical form. Here we employ the method of moments to calculate the capacitance between two electrical conductors of arbitrary shape. Combined with a model for source–drain current in thin-film transistors (TFTs) on the surface of a cylinder, we are able to calculate the current–voltage characteristics in curved TFTs as a function of bending angle. We demonstrate how deformations to device geometry are expected to lead to non-negligible changes in current–voltage characteristics. This work represents the first step towards a new framework for understanding and characterizing electronics with any physical form factor, ultimately bringing flexible electronics closer to commercial viability.  more » « less
Award ID(s):
1902032
PAR ID:
10361217
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Materials
Volume:
4
Issue:
2
ISSN:
2515-7639
Page Range / eLocation ID:
Article No. 025002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rapidly growing flexible and wearable electronics highly demand the development of flexible energy storage devices. Yet, these devices are susceptible to extreme, repeated mechanical deformations under working circumstances. Herein, the design and fabrication of a smart, flexible Li‐ion battery with shape memory function, which has the ability to restore its shape against severe mechanical deformations, bending, twisting, rolling or elongation, is reported. The shape memory function is induced by the integration of a shape‐adjustable solid polymer electrolyte. This Li‐ion battery delivers a specific discharge capacity of≈140 mAh g‐1at 0.2 C charge/discharge rate with≈92% capacity retention after 100 cycles and≈99.85% Coulombic efficiency, at 20°C. Besides recovery from mechanical deformations, it is visually demonstrated that the shape of this smart battery can be programmed to adjust itself in response to an internal/external heat stimulus for task‐specific and advanced applications. Considering the vast range of available shape memory polymers with tunable chemistry, physical, and mechanical characteristics, this study offers a promising approach for engineering smart batteries responsive to unfavorable internal or external stimulus, with potential to have a broad impact on other energy storage technologies in different sizes and shapes. 
    more » « less
  2. Flexible hybrid electronics (FHE) is emerging as a promising solution to combine the benefits of printed electronics and silicon technology. FHE has many high-impact potential areas, such as wearable applications, health monitoring, and soft robotics, due to its physical advantages, which include light weight, low cost and the ability conform to different shapes. However, physical deformations in the field can lead to significant testing and validation challenges. For example, designers must ensure that FHE devices continue to meet their specs even when the components experience stress due to bending. Hence, physical deformation, which is hard to emulate, has to be part of the test procedures for FHE devices. This paper is the first to analyze stress experience at different parts of FHE devices under different bending conditions. We develop a novel methodology to maximize the test coverage with minimum number of text vectors with the help of a mixed integer linear programming formulation. We validate the proposed approach using an FHE prototype and COMSOL Multiphysics simulations. 
    more » « less
  3. A model for the low-frequency magnetoelectric (ME) effect that takes into consideration the bending deformation in a ferromagnetic and ferroelectric bilayer is presented. Past models, in general, ignored the influence of bending deformation. Based on the solution of the equations of the elastic theory and electrostatics, expressions for the ME voltage coefficients (MEVCs) and ME sensitivity coefficients (MESCs) in terms of the physical parameters of the materials and the geometric characteristic of the structure were obtained. Contributions from both bending and planar deformations were considered. The theory was applied to composites of PZT and Ni with negative magnetostriction, and Permendur, or Metglas, both with positive magnetostriction. Estimates of MEVCs and MESCs indicate that the contribution from bending deformation is significant but smaller than the contribution from planar deformations, leading to a reduction in the net ME coefficients in all the three bilayer systems. 
    more » « less
  4. Abstract The measurement of mobility and threshold voltage in thin‐film transistors (TFTs) in which the mobility is a function of gate voltage or carrier density is usually done inaccurately. Herein, accurate mobility calculations within the framework of the gradual channel approximation are described. Conventionally, the derivative of drain current with respect to gate voltage is often used to calculate mobilities in the linear region. This procedure often leads to errors when the mobility is not constant. Using a first‐order finite difference‐based calculations, it is shown how the correct field‐effect mobility can be extracted. The corrected mobility can be smaller than the conventionally calculated field‐effect mobility by up to a factor of 2. It is also shown that the corrected field‐effect mobility is identical to the average mobility. A threshold voltage that is independent of gate voltage value and suitable for disordered semiconductors is used for more accurate mobility calculations. The mobility and threshold voltage calculations are illustrated with experimental data from multiple TFTs with indium gallium zinc oxide, zinc tin oxide, and molybdenum disulfide channel layers. 
    more » « less
  5. Printed transistors have a wide range of applications, but the limited resolution of printing techniques (10-30 µm) has been a barrier to their utility and scalability. Previous works have relied on chemical processes or tedious post-processing to realize printed submicron channel lengths, limiting their applicability. Here, we show that capillary flow printing can create as-printed submicron carbon nanotube thin-film transistors (CNT-TFTs) without chemical modification or physical manipulation post-printing. We show that the approach can be used to print conducting, semiconducting, and insulating inks on different types of substrates (silicon, Kapton, and paper), and can be used to fabricate various TFT device architectures. Printed CNT-TFTs yielded on-currents of 1.12 mA/mm when back gated on Si/SiO2, and 490 µA/mm when side gated through ion gel on Kapton. Mechanical bending and sweep rate resilience of devices on Kapton show the wide utility of these printed devices for flexible applications. 
    more » « less