skip to main content


Title: Magnonic superradiant phase transition
Abstract

In the superradiant phase transition (SRPT), coherent light and matter fields are expected to appear spontaneously in a coupled light–matter system in thermal equilibrium. However, such an equilibrium SRPT is forbidden in the case of charge-based light–matter coupling, known as no-go theorems. Here, we show that the low-temperature phase transition of ErFeO3at a critical temperature of approximately 4 K is an equilibrium SRPT achieved through coupling between Fe3+magnons and Er3+spins. By verifying the efficacy of our spin model using realistic parameters evaluated via terahertz magnetospectroscopy and magnetization experiments, we demonstrate that the cooperative, ultrastrong magnon–spin coupling causes the phase transition. In contrast to prior studies on laser-driven non-equilibrium SRPTs in atomic systems, the magnonic SRPT in ErFeO3occurs in thermal equilibrium in accordance with the originally envisioned SRPT, thereby yielding a unique ground state of a hybrid system in the ultrastrong coupling regime.

 
more » « less
Award ID(s):
1720595
NSF-PAR ID:
10361459
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Exciton dynamics can be strongly affected by lattice vibrations through electron-phonon coupling. This is rarely explored in two-dimensional magnetic semiconductors. Focusing on bilayer CrI3, we first show the presence of strong electron-phonon coupling through temperature-dependent photoluminescence and absorption spectroscopy. We then report the observation of periodic broad modes up to the 8th order in Raman spectra, attributed to the polaronic character of excitons. We establish that this polaronic character is dominated by the coupling between the charge-transfer exciton at 1.96 eV and a longitudinal optical phonon at 120.6 cm−1. We further show that the emergence of long-range magnetic order enhances the electron-phonon coupling strength by ~50% and that the transition from layered antiferromagnetic to ferromagnetic order tunes the spectral intensity of the periodic broad modes, suggesting a strong coupling among the lattice, charge and spin in two-dimensional CrI3. Our study opens opportunities for tailoring light-matter interactions in two-dimensional magnetic semiconductors.

     
    more » « less
  2. Abstract

    The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+spins (Fe3+magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.

     
    more » « less
  3. Abstract

    Ultrafast laser excitation provides a means to transiently realize long-range ordered electronic states of matter that are hidden in thermal equilibrium. Recently, this approach has unveiled a variety of thermally inaccessible ordered states in strongly correlated materials, including charge density wave, ferroelectric, magnetic, and intertwined charge-orbital ordered states. However, more exotic hidden states exhibiting higher multipolar ordering remain elusive owing to the challenge of directly manipulating and detecting them with light. Here we demonstrate a method to induce a dynamical transition from a thermally allowed to a thermally forbidden spin-orbit entangled quadrupolar ordered state in Ca2RuO4by coherently exciting a phonon that is strongly coupled to the order parameter. Combining probe photon energy-resolved coherent phonon spectroscopy measurements with model Hamiltonian calculations, we show that the dynamical transition is manifested through anomalies in the temperature, pump excitation fluence, and probe photon energy dependence of the strongly coupled phonon. With this procedure, we introduce a general pathway to uncover hidden multipolar ordered states and to control their re-orientation on ultrashort timescales.

     
    more » « less
  4. Abstract

    We investigate electroabsorption (EA) in organic semiconductor microcavities to understand whether strong light-matter coupling non-trivially alters their nonlinear optical [$${\chi }^{(3)}\left(\omega,{{{{\mathrm{0,0}}}}}\right)$$χ(3)ω,0, 0] response. Focusing on strongly-absorbing squaraine (SQ) molecules dispersed in a wide-gap host matrix, we find that classical transfer matrix modeling accurately captures the EA response of low concentration SQ microcavities with a vacuum Rabi splitting of$$\hslash \Omega \approx 200$$Ω200meV, but fails for high concentration cavities with$$\hslash \Omega \approx 420$$Ω420meV. Rather than new physics in the ultrastrong coupling regime, however, we attribute the discrepancy at high SQ concentration to a nearly dark H-aggregate state below the SQ exciton transition, which goes undetected in the optical constant dispersion on which the transfer matrix model is based, but nonetheless interacts with and enhances the EA response of the lower polariton mode. These results indicate that strong coupling can be used to manipulate EA (and presumably other optical nonlinearities) from organic microcavities by controlling the energy of polariton modes relative to other states in the system, but it does not alter the intrinsic optical nonlinearity of the organic semiconductor inside the cavity.

     
    more » « less
  5. Abstract

    The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. Topological polaritons (TPs) offer an ideal platform in this context, with unique properties stemming from resilient topological states of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) as a promising platform for topological polaritonics. We show that the strong coupling between topological photonic modes of the metasurface and excitons in TMDs yields a topological polaritonic Z2phase. We experimentally confirm the emergence of one-way spin-polarized edge TPs in metasurfaces integrating MoSe2and WSe2. Combined with the valley polarization in TMD monolayers, the proposed system enables an approach to engage the photonic angular momentum and valley and spin of excitons, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.

     
    more » « less