skip to main content


Title: Subseasonal predictability of the North Atlantic Oscillation
Abstract

Skillfully predicting the North Atlantic Oscillation (NAO), and the closely related northern annular mode (NAM), on ‘subseasonal’ (weeks to less than a season) timescales is a high priority for operational forecasting centers, because of the NAO’s association with high-impact weather events, particularly during winter. Unfortunately, the relatively fast, weather-related processes dominating total NAO variability are unpredictable beyond about two weeks. On longer timescales, the tropical troposphere and the stratosphere provide some predictability, but they contribute relatively little to total NAO variance. Moreover, subseasonal forecasts are only sporadically skillful, suggesting the practical need to identify the fewer potentially predictable events at the time of forecast. Here we construct an observationally based linear inverse model (LIM) that predicts when, and diagnoses why, subseasonal NAO forecasts will be most skillful. We use the LIM to identify those dynamical modes that, despite capturing only a fraction of overall NAO variability, are largely responsible for extended-range NAO skill. Predictable NAO events stem from the linear superposition of these modes, which represent joint tropical sea-surface temperature-lower stratosphere variability plus a single mode capturing downward propagation from the upper stratosphere. Our method has broad applicability because both the LIM and the state-of-the-art European Centre for Medium-Range Weather Forecasts Integrated Forecast System (IFS) have higher (and comparable) skill for the same set of predicted high skill forecast events, suggesting that the low-dimensional predictable subspace identified by the LIM is relevant to real-world subseasonal NAO predictions.

 
more » « less
Award ID(s):
1756958
NSF-PAR ID:
10361720
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
4
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 044024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There are two major challenges to improving interannual to decadal forecasts: (a) consistently initializing the coupled system so that variability is not dominated by initial imbalances, and (b) having a large sample of different initial conditions on which to test forecast skill. The second challenge requires consideration of time periods not only outside the recent period of intensive ocean observation, but also before the instrumental era, which increases the importance of the first challenge. Forecasts prior to the 1850s isolate internally generated sources of variability by removing the majority of anthropogenic forcing, and the sparse observational record during this time period motivates the use of paleoclimate proxy data. We address these issues by using a linear inverse model (LIM) approach and a recent proxy‐based reconstruction over the last millennium at annual resolution. The reconstruction is used to train, initialize, and validate LIM forecasts. The LIM trained on paleo‐data assimilated using a LIM trained on global climate model (GCM) simulation data outperforms a LIM trained on raw GCM data at forecast leads longer than 2 years for in‐sample experiments, and beyond 4‐year leads in most out‐of‐sample experiments validated on instrumental data. The most skillful normal mode of the paleo‐data LIM for the instrumental experiment represents a persistent pattern with a longer decay time than for the GCM‐LIM's modes, which accounts for the outperformance at longer leads. The paleo‐data LIM is consequently more sensitive to ocean initialization, which is reflected in forecasts during the instrumental era where ocean reanalyses exhibit large uncertainty.

     
    more » « less
  2. Abstract

    The stratosphere can have a significant impact on winter surface weather on subseasonal to seasonal (S2S) timescales. This study evaluates the ability of current operational S2S prediction systems to capture two important links between the stratosphere and troposphere: (1) changes in probabilistic prediction skill in the extratropical stratosphere by precursors in the tropics and the extratropical troposphere and (2) changes in surface predictability in the extratropics after stratospheric weak and strong vortex events. Probabilistic skill exists for stratospheric events when including extratropical tropospheric precursors over the North Pacific and Eurasia, though only a limited set of models captures the Eurasian precursors. Tropical teleconnections such as the Madden‐Julian Oscillation, the Quasi‐Biennial Oscillation, and El Niño–Southern Oscillation increase the probabilistic skill of the polar vortex strength, though these are only captured by a limited set of models. At the surface, predictability is increased over the United States, Russia, and the Middle East for weak vortex events, but not for Europe, and the change in predictability is smaller for strong vortex events for all prediction systems. Prediction systems with poorly resolved stratospheric processes represent this skill to a lesser degree. Altogether, the analyses indicate that correctly simulating stratospheric variability and stratosphere‐troposphere dynamical coupling are critical elements for skillful S2S wintertime predictions.

     
    more » « less
  3. null (Ed.)
    Abstract Although useful at short and medium ranges, current dynamical models provide little additional skill for precipitation forecasts beyond week 2 (14 days). However, recent studies have demonstrated that downstream forcing by the Madden–Julian oscillation (MJO) and quasi-biennial oscillation (QBO) influences subseasonal variability, and predictability, of sensible weather across North America. Building on prior studies evaluating the influence of the MJO and QBO on the subseasonal prediction of North American weather, we apply an empirical model that uses the MJO and QBO as predictors to forecast anomalous (i.e., categorical above- or below-normal) pentadal precipitation at weeks 3–6 (15–42 days). A novel aspect of our study is the application and evaluation of the model for subseasonal prediction of precipitation across the entire contiguous United States and Alaska during all seasons. In almost all regions and seasons, the model provides “skillful forecasts of opportunity” for 20%–50% of all forecasts valid weeks 3–6. We also find that this model skill is correlated with historical responses of precipitation, and related synoptic quantities, to the MJO and QBO. Finally, we show that the inclusion of the QBO as a predictor increases the frequency of skillful forecasts of opportunity over most of the contiguous United States and Alaska during all seasons. These findings will provide guidance to forecasters regarding the utility of the MJO and QBO for subseasonal precipitation outlooks. 
    more » « less
  4. Abstract. Forecasts of Pacific jet variability are used to predictstratosphere-to-troposphere transport (STT) and tropical-to-extratropicalmoisture export (TME) during boreal spring over the Pacific–North Americanregion. A retrospective analysis first documents the regionality of STT andTME for different Pacific jet patterns. Using these results as a guide,Pacific jet hindcasts, based on zonal-wind forecasts from the European Centrefor Medium-Range Weather Forecasting Integrated Forecasting System, areutilized to test whether STT and TME over specific geographic regions may bepredictable for subseasonal forecast leads (3–6 weeks ahead of time). Largeanomalies in STT to the mid-troposphere over the North Pacific, TME to thewest coast of the United States, and TME over Japan are found to have the bestpotential for subseasonal predictability using upper-level wind forecasts. STTto the planetary boundary layer over the intermountain west of the UnitedStates is also potentially predictable for subseasonal leads but likely onlyin the context of shifts in the probability of extreme events. While STT andTME forecasts match verifications quite well in terms of spatial structure andanomaly sign, the number of anomalous transport days is underestimatedcompared to observations. The underestimation of the number of anomaloustransport days exhibits a strong seasonal cycle, which becomes steadily worseas spring progresses into summer. 
    more » « less
  5. null (Ed.)
    Abstract The excitation of the Pacific–North American (PNA) teleconnection pattern by the Madden–Julian oscillation (MJO) has been considered one of the most important predictability sources on subseasonal time scales over the extratropical Pacific and North America. However, until recently, the interactions between tropical heating and other extratropical modes and their relationships to subseasonal prediction have received comparatively little attention. In this study, a linear inverse model (LIM) is applied to examine the tropical–extratropical interactions. The LIM provides a means of calculating the response of a dynamical system to a small forcing by constructing a linear operator from the observed covariability statistics of the system. Given the linear assumptions, it is shown that the PNA is one of a few leading modes over the extratropical Pacific that can be strongly driven by tropical convection while other extratropical modes present at most a weak interaction with tropical convection. In the second part of this study, a two-step linear regression is introduced that leverages a LIM and large-scale climate variability to the prediction of hydrological extremes (e.g., atmospheric rivers) on subseasonal time scales. Consistent with the findings of the first part, most of the predictable signals on subseasonal time scales are determined by the dynamics of the MJO–PNA teleconnection while other extratropical modes are important only at the shortest forecast leads. 
    more » « less