skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Layered 2D Nanomaterials to Tailor Friction and Wear in Machine Elements—A Review
Abstract Recent advances in 2D nanomaterials, such as graphene, transition metal dichalcogenides, boron nitride, MXenes, allow not only to discover several new nanoscale phenomena but also to address the scientific and industrial challenges associated with the design of systems with desired physical properties. One of the great challenges for mechanical systems is associated with addressing friction and wear problems in machine elements. In this review, the beneficial properties of layered 2D materials that enable the control of their tribological behavior and make them excellent candidates for efficient friction and wear reduction in dry‐running and boundary lubricated machine components are summarized. The recent studies highlighting the successful implementation of 2D structures when used as solid lubricant coatings or reinforcement phases in composites for various machine components including sliding and rolling bearings, gears, and seals are overviewed. The examples presented in the studies demonstrate the great potential for 2D materials to address the energy‐saving needs by friction and wear reduction.  more » « less
Award ID(s):
2018132
PAR ID:
10362234
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
9
Issue:
3
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent advancements in the field of two-dimensional (2D) materials have led to the discovery of a wide range of 2D materials with intriguing properties. Atomistic-scale simulation methods have played a key role in these discoveries. In this review, we provide an overview of the recent progress in ReaxFF force field developments and applications in modeling the following layered and nonlayered 2D materials: graphene, transition metal dichalcogenides, MXenes, hexagonal boron nitrides, groups III-, IV- and V-elemental materials, as well as the mixed dimensional van der Waals heterostructures. We further discuss knowledge gaps and challenges associated with synthesis and characterization of 2D materials. We close this review with an outlook addressing the challenges as well as plans regarding ReaxFF development and possible large-scale simulations, which should be helpful to guide experimental studies in a discovery of new materials and devices. 
    more » « less
  2. Abstract Although lubricants play an essential role in reducing wear and friction in mechanical systems, environmental issues persist. In the past decades, Ionic Liquids (ILs) have arisen as environmentally friendly alternatives to conventional lubricants and additives. ILs are low-volatile and non-flammable salts that possess low melting points (below 100 °C). Their tunable properties, achieved by selecting the appropriate cation and anion, make them ideal candidates for different applications, including lubricants. In recent times, Protic Ionic Liquids (PILs) have attracted attention in the tribological community as a cost-effective alternative to conventional aprotic counterparts. In this work, a choline-amino acid ionic liquid, derived only from renewable, biodegradable, and biocompatible products, was synthesized, and investigated as both neat lubricant and additive to non-polar oil. The lubricating properties of [CHO][GLY] were studied both as a neat lubricant and as a 1 wt. % additive to a polyalphaolefin (PAO) oil using a ball-on-flat reciprocating friction tester. AISI 52100 steel disks were tested against AISI 52100 steel balls using either [CHO][GLY] or the mixture of PAO+[CHO][GLY]. For comparison purposes, the commercially available base oil, PAO, was also tested. Preliminary results showed no major differences in friction between the lubricants used. Nevertheless, the addition of 1 wt.% to the PAO demonstrated a remarkable 30% reduction in wear on the steel disk. This encouraging improvement in anti-wear characteristics raises the potential advancement of lubrication technology with the choline-amino acid ionic liquid, coupled with its environmentally friendly nature. Energy-dispersive X-ray (EDX) spectroscopy, non-contact profilometry, and scanning electron microscopy (SEM) were used to study the worn steel surfaces and elucidate the wear mechanisms. 
    more » « less
  3. Hybrid organic–inorganic perovskites (HOIPs) have emerged as a promising class of materials for optoelectronic and spintronic applications. Layered two-dimensional (2D) HOIP variants have received considerable attention, primarily due to their unique properties that can be modulated through the tailored selection of both organic and inorganic components. The spin splitting in the band structure due to the strong spin–orbit coupling is one of the most intriguing properties of such 2D HOIPs materials for their potential utility in spintronics. In addition to observing the spin splitting in equilibrium due to the non-centrosymmetric structure, the possibility of having dynamic spin splitting at room temperature of the otherwise centrosymmetric systems has become a topic of great debate. While modern first-principles molecular dynamics (FPMD) simulation is able to address such a question in principle by taking into account the lattice anharmonicity in electronic structure calculation, the finite-size error poses a great challenge in practice. In this work, we employ a machine learning (ML) model to overcome this practical limitation to investigate the dynamic spin splitting in phenylethyl ammonium lead iodide 2D HOIP. Specifically, we use the deep potential molecular dynamics approach [Zeng et al., J. Chem. Phys. 159(5), 054801 (2023)] for ML FPMD simulation, and we also develop a surrogate model for predicting the spin splitting based on the recent finding that relates the spin splitting to structural descriptors in 2D HOIPs. Our work shows that even in globally centrosymmetric structures, the inclusion of lattice anharmonicity can induce dynamic spin splitting at room temperature. 
    more » « less
  4. Abstract Structural superlubricity (SSL) at layered material interfaces is an exciting and vibrant field of research, offering vast opportunities to achieve ultralow friction and wear with numerous potential technological applications. At increasing length‐scales, new physical and chemical energy dissipation pathways emerge that threaten to push the system out of the superlubric regime. Physical inhibitors of SSL are primarily associated with in‐plane elasticity, out‐of‐plane corrugation, moiré superlattices, grain boundaries, and lattice defects. Chemical mechanisms that may suppress superlubric behavior include interlayer bonding, wear, and external contaminants. In this article, these and other challenges are reviewed facing the scaling‐up of structural superlubricity, as reflected in recent experimental and theoretical studies. Further perspectives are offered on future directions for realizing and manipulating macroscale superlubricity, outlining technological opportunities that it entails. 
    more » « less
  5. Abstract Conventional lubricants face significant challenges in electric vehicle (EV) systems due to their low electrical conductivity and inability to mitigate tribo-electrification effects which can result in increased friction, wear, and electrical discharge damage under external electrification. Consequently, conductive lubricants like ionic liquids (ILs) have emerged as promising alternatives, offering enhanced compatibility with EV applications. This study investigated the tribological behavior of four phosphonium-based room temperature ionic liquids (PRTILs) with trihexyltetradecyl phosphonium [P6,6,6,14] or tributyltetradecyl phosphonium [P4,4,4,14] cations and saccharinate [Sacc] or benzoate [Benz] anions under electrified conditions, targeting potential EV applications. Physicochemical properties, including viscosity and ionic conductivity, were measured using a viscometer and a conductivity meter, while tribological properties were evaluated using an electrified mini-traction machine and an electrified rotary ball-on-disk setup. The results revealed that all the PRTILs exhibited superior tribological (friction and wear) performance than mineral oil with or without electrification. PRTILs with the [Sacc] anion feature a double aromatic ring structure, while those with the [Benz] anion feature a single aromatic ring structure. Under low electrification (10 mA), [P6,6,6,14][Sacc] outperformed [Benz]-based PRTILs, showing a lower coefficient of friction and wear due to their higher viscosity and lower ionic conductivity. Additionally, [P6,6,6,14][Sacc] showed a power loss lower than [P4,4,4,14][Sacc] but higher than [Benz]-based PRTILs under tribo-electrification. The addition of graphene nanoplatelets (GNPs) reduced the power loss of [P6,6,6,14][Sacc] by 24% by reducing the electric contact resistance. Overall, double-ring aromatic [P6,6,6,14][Sacc] demonstrated superior tribological performance, and GNP additives enhanced their power efficiency, offering a promising pathway for IL-based lubricant development for electrified conditions. 
    more » « less