skip to main content

Title: PressION: An All-Fabric Piezoionic Pressure Sensor for Extracting Physiological Metrics in Both Static and Dynamic Contexts

The strategy of detecting physiological signals and body movements using fabric-based pressure sensors offers the opportunity to unobtrusively collect multimodal health metrics using loose-fitting, familiar garments in natural environments. (A. Kiaghadi, S. Z. Homayounfar, J. Gummeson, T. Andrew, and D. Ganesan,Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,3, 1–29 (2019)). However, many sensing scenarios, such as sleep and posture monitoring, involve an added static pressure from exerted body weight, which overpowers weaker pressure signals originating from heartbeats, respiration and pulse and phonation. Here, we introduce an all-fabric piezoionic pressure sensor (PressION) that, on account of its ionic conductivity, functions over a wide range of static and dynamic applied pressures (from subtle ballistic heartbeats and pulse waveforms, to larger-scale body movements). This piezoionic sensor also maintains its pressure responsivity in the presence of an added background pressure and upon integration into loose-fitting garments. The broad ability of PressION to record a wide variety of physiological signals in realistic environments was confirmed by acquiring heartbeat, pulse, joint motion, phonation and step data from different body locations. PressION’s sensitivity, along with its low-cost fabrication process, qualifies it as a uniquely useful sensing element in wearable health monitoring systems.

; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of The Electrochemical Society
Page Range or eLocation-ID:
Article No. 017515
The Electrochemical Society
Sponsoring Org:
National Science Foundation
More Like this
  1. The measurement of vital signs (such as respiration rate, body temperature, pulse, and blood pressure), especially during strenuous activities, is essential for physical performance and health monitoring. A variety of wearable chest band sensors have been developed, commercialized, and widely used in consumer and healthcare settings. The plethora of technology choices also means that each unique chest band sensor may require different data acquisition hardware and software systems, and data may not be transferable between platforms. Therefore, the objective of this work was to develop a low-cost, disposable, respiration sensor that could be attached onto any elastic chest band. The approach was to spray-coat graphene nanosheet (GNS)-based thin films onto unidirectionally stretchable elastic fabric to form a piezoresistive material. Snap buttons were incorporated at the ends of the fabric so that they could be attached onto any chest band, removed at any time, and replaced for a new data collection event. The resistive nature of the nanocomposite sensor means that they can be easily interfaced (e.g., using a voltage divider) with any existing data acquisition (DAQ) module while adding respiration monitoring capabilities. To facilitate testing of these nanocomposite respiration sensors, a miniature DAQ module with four sensing channels was alsomore »prototyped. Then, tests were performed with human subjects wearing a nanocomposite chest band and a reference commercial respiration monitoring chest band. Simultaneous measurements of subject respiration verified the respiration monitoring performance of these low-cost, disposable, nanocomposite fabric sensors.« less
  2. Studies with e-textile sensors embedded in garments are typically performed on static and controlled phantom models that do not reflect the dynamic nature of wearables. Instead, our objective was to understand the noise e-textile sensors would experience during real-world scenarios. Three types of sleeves, made of loose, tight, and stretchy fabrics, were applied to a phantom arm, and the corresponding fabric movement was measured in three dimensions using physical markers and image-processing software. Our results showed that the stretchy fabrics allowed for the most consistent and predictable clothing-movement (average displacement of up to −2.3 ± 0.1 cm), followed by tight fabrics (up to −4.7 ± 0.2 cm), and loose fabrics (up to −3.6 ± 1.0 cm). In addition, the results demonstrated better performance of higher elasticity (average displacement of up to −2.3 ± 0.1 cm) over lower elasticity (average displacement of up to −3.8 ± 0.3 cm) stretchy fabrics. For a case study with an e-textile sensor that relies on wearable loops to monitor joint flexion, our modeling indicated errors as high as 65.7° for stretchy fabric with higher elasticity. The results from this study can (a) help quantify errors of e-textile sensors operating “in-the-wild,” (b) inform decisions regarding themore »optimal type of clothing-material used, and (c) ultimately empower studies on noise calibration for diverse e-textile sensing applications.« less
  3. Stress plays a critical role in our lives, impacting our productivity and our long-term physiological and psychological well-being. This has motivated the development of stress monitoring solutions to better understand stress, its impact on productivity and teamwork, and help users adapt their habits toward more sustainable stress levels. However, today's stress monitoring solutions remain obtrusive, requiring active user participation (e.g., self-reporting), interfering with people's daily activities, and often adding more burden to users looking to reduce their stress. In this paper, we introduce WiStress, the first system that can passively monitor a user's stress levels by relying on wireless signals. WiStress does not require users to actively provide input or to wear any devices on their bodies. It operates by transmitting ultra-low-power wireless signals and measuring their reflections off the user's body. WiStress introduces two key innovations. First, it presents the first machine learning network that can accurately and robustly extract heartbeat intervals (IBI's) from wireless reflections without constraints on a user's daily activities. Second, it introduces a stress classification framework that combines the extracted heartbeats with other wirelessly captured stress-related features in order to infer a subject's stress level. We built a prototype of WiStress and tested it onmore »22 different subjects across different environments in both stress-induced and free-living conditions. Our results demonstrate that WiStress has high accuracy (84%-95%) in inferring a person's stress level in a fully-automated way, paving the way for ubiquitous sensing systems that can monitor stress and provide feedback to improve productivity, health, and well-being.« less
  4. Vital signs (e.g., heart and respiratory rate) are indicative for health status assessment. Efforts have been made to extract vital signs using radio frequency (RF) techniques (e.g., Wi-Fi, FMCW, UWB), which offer a non-touch solution for continuous and ubiquitous monitoring without users’ cooperative efforts. While RF-based vital signs monitoring is user-friendly, its robustness faces two challenges. On the one hand, the RF signal is modulated by the periodic chest wall displacement due to heartbeat and breathing in a nonlinear manner. It is inherently hard to identify the fundamental heart and respiratory rates (HR and RR) in the presence of higher order harmonics of them and intermodulation between HR and RR, especially when they have overlapping frequency bands. On the other hand, the inadvertent body movements may disturb and distort the RF signal, overwhelming the vital signals, thus inhibiting the parameter estimation of the physiological movement (i.e., heartbeat and breathing). In this paper, we propose DeepVS, a deep learning approach that addresses the aforementioned challenges from the non-linearity and inadvertent movements for robust RF-based vital signs sensing in a unified manner. DeepVS combines 1D CNN and attention models to exploit local features and temporal correlations. Moreover, it leverages a two-stream schememore »to integrate features from both time and frequency domains. Additionally, DeepVS unifies the estimation of HR and RR with a multi-head structure, which only adds limited extra overhead (<1%) to the existing model, compared to doubling the overhead using two separate models for HR and RR respectively. Our experiments demonstrate that DeepVS achieves 80-percentile HR/RR errors of 7.4/4.9 beat/breaths per minute (bpm) on a challenging dataset, as compared to 11.8/7.3 bpm of a non-learning solution. Besides, an ablation study has been conducted to quantify the effectiveness of DeepVS.« less
  5. Perspiration level monitoring enables numerous applications such as physical condition estimation, personal comfort monitoring, health/exercise monitoring, and inference of environmental conditions of the user. Prior works on perspiration (sweat) sensing require users to manually hold a device or attach adhesive sensors directly onto their skin, limiting user mobility and comfort. In this paper, we present a low-cost and novel wearable sensor system that is able to accurately estimate an individual's sweat level based on measuring moisture. The sensor is designed in a threadlike form factor, allowing it to be sewn into the seams of clothing, rather than having to act as a standalone sensor that the user must attach to their body. The system is comprised of multiple cotton-covered conductive threads that are braided into one sensor. When a person sweats, the resistance between the braided conductive threads changes as moisture becomes trapped in the cotton covering of the threads. The braided three-dimensional structure allows for robust estimation of perspiration level in the presence of external forces that may cause sensor distortion, such as motion. We characterize the relationship between the volume of sweat and measured resistance between the braided threads. Finally, we weave our sensors into the fabric ofmore »a shirt and conduct on-body experiments to study users' sweating level through various activities.« less