skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relaxation of stationary states on a quantum computer yields a unique spectroscopic fingerprint of the computer’s noise
Abstract Quantum computing has the potential to revolutionize computing, but its significant sensitivity to noise requires sophisticated error correction and mitigation. Traditionally, noise on the quantum device is characterized directly through qubit and gate measurements, but this approach has drawbacks in that it does not adequately capture the effect of noise on realistic multi-qubit applications. In this paper, we simulate the relaxation of stationary quantum states on a quantum computer to obtain a unique spectroscopic fingerprint of the computer’s noise. In contrast to traditional approaches, we obtain the frequency profile of the noise as it is experienced by the simulated stationary quantum states. Data from multiple superconducting-qubit IBM processors show that noise generates a bath within the simulation that exhibits both colored noise and non-Markovian behavior. Our results provide a direction for noise mitigation but also suggest how to use noise for quantum simulations of open systems.  more » « less
Award ID(s):
1955907
PAR ID:
10363044
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quantum computing holds transformative promise, but its realization is hindered by the inherent susceptibility of quantum computers to errors. Quantum error mitigation has proved to be an enabling way to reduce computational error in present noisy intermediate scale quantum computers. This research introduces an innovative approach to quantum error mitigation by leveraging machine learning, specifically employing adaptive neural networks. With experiment and simulations done on 127-qubit IBM superconducting quantum computer, we were able to develop and train a neural network architecture to dynamically adjust output expectation values based on error characteristics. The model leverages a prior classifier module outcome on simulated quantum circuits with errors, and the antecedent neural network regression module adapts its parameters and response to each error characteristics. Results demonstrate the adaptive neural network’s efficacy in mitigating errors across diverse quantum circuits and noise models, showcasing its potential to surpass traditional error mitigation techniques with an accuracy of 99% using the fully adaptive neural network for quantum error mitigation. This work presents a significant application of classical machine learning methods towards enhancing the robustness and reliability of quantum computations, providing a pathway for the practical realization of quantum computing technologies. 
    more » « less
  2. Abstract The promise of universal quantum computing requires scalable single‐ and inter‐qubit control interactions. Currently, three of the leading candidate platforms for quantum computing are based on superconducting circuits, trapped ions, and neutral atom arrays. However, these systems have strong interaction with environmental and control noises that introduce decoherence of qubit states and gate operations. Alternatively, photons are well decoupled from the environment and have advantages of speed and timing for quantum computing. Photonic systems have already demonstrated capability for solving specific intractable problems like Boson sampling, but face challenges for practically scalable universal quantum computing solutions because it is extremely difficult for a single photon to “talk” to another deterministically. Here, a universal distributed quantum computing scheme based on photons and atomic‐ensemble‐based quantum memories is proposed. Taking the established photonic advantages, two‐qubit nonlinear interaction is mediated by converting photonic qubits into quantum memory states and employing Rydberg blockade for the controlled gate operation. Spatial and temporal scalability of this scheme is demonstrated further. These results show photon‐atom network hybrid approach can be a potential solution to universal distributed quantum computing. 
    more » « less
  3. Abstract The Pauli exclusion principle governs the fundamental structure and function of fermionic systems from molecules to materials. Nonetheless, when such a fermionic system is in a pure state, it is subject to additional restrictions known as the generalized Pauli constraints (GPCs). Here we verify experimentally the violation of the GPCs for an open quantum system using data from a superconducting-qubit quantum computer. We prepare states of systems with three-to-seven qubits directly on the quantum device and measure the one-fermion reduced density matrix (1-RDM) from which we can test the GPCs. We find that the GPCs of the 1-RDM are sufficiently sensitive to detect the openness of the 3-to-7 qubit systems in the presence of a single-qubit environment. Results confirm experimentally that the openness of a many-fermion quantum system can be decoded from only a knowledge of the 1-RDM with potential applications from quantum computing and sensing to noise-assisted energy transfer. 
    more » « less
  4. null (Ed.)
    Abstract Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically modifying exchange couplings, we transfer single- and two-spin states between distant electrons in less than 127 ns. We also show that this method can be cascaded for spin-state transfer in long spin chains. Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the experimental parameters studied here. In the future, state and process tomography will be required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors. This method will be useful for initialization, state distribution, and readout in large spin-qubit arrays for gate-based quantum computing. It also opens up the possibility of universal adiabatic quantum computing in semiconductor quantum-dot spin qubits. 
    more » « less
  5. Silicon-based spin qubit platform is a promising candidate for the hardware realization of quantum computing. Charge noise, however, plays a critical role in limiting the fidelity and scalability of silicon-based quantum computing technologies. This work presents Green’s transfer function approach to simulate the correlated noise power spectral density (PSD) in silicon spin qubit devices. The simulation approach relates the dynamics of the charge noise source of two-level fluctuators (TLFs) to the correlated noise of spin qubit device characteristics through a transfer function. It allows the noise auto-correlation and cross correlation between any pairs of physical quantities of interest to be systematically computed and analyzed. Because each spin qubit device involves only a small number of TLFs due to its nanoscale device size, the distribution of TLFs impacts the noise correlation significantly. In both a two-qubit quantum gate and a spin qubit array device, the charge noise shows strong cross correlation between neighboring qubits. The simulation results also reveal a phase-flipping feature of the noise cross-PSD between neighboring spin qubits, consistent with a recent experiment. 
    more » « less