skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nontrivial nanostructure, stress relaxation mechanisms, and crystallography for pressure-induced Si-I → Si-II phase transformation
Abstract Crystallographic theory based on energy minimization suggests austenite-twinned martensite interfaces with specific orientation, which are confirmed experimentally for various materials. Pressure-induced phase transformation (PT) from semiconducting Si-I to metallic Si-II, due to very large and anisotropic transformation strain, may challenge this theory. Here, unexpected nanostructure evolution during Si-I → Si-II PT is revealed by combining molecular dynamics (MD), crystallographic theory, generalized for strained crystals, and in situ real-time Laue X-ray diffraction (XRD). Twinned Si-II, consisting of two martensitic variants, and unexpected nanobands, consisting of alternating strongly deformed and rotated residual Si-I and third variant of Si-II, form$$\{111\}$$ { 111 } interface with Si-I and produce almost self-accommodated nanostructure despite the large transformation volumetric strain of$$-0.237$$ 0.237 . The interfacial bands arrest the$$\{111\}$$ { 111 } interfaces, leading to repeating nucleation-growth-arrest process and to growth by propagating$$\{110\}$$ { 110 } interface, which (as well as$$\{111\}$$ { 111 } interface) do not appear in traditional crystallographic theory.  more » « less
Award ID(s):
1943710 1904830
PAR ID:
10363286
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight$${q \in [1,4)}$$ q [ 1 , 4 ) . Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values ofqthan the FK-Ising model ($$q=2$$ q = 2 ). Given the convergence of interfaces, the conjectural formulas for other values ofqcould be verified similarly with relatively minor technical work. The limit interfaces are variants of$$\text {SLE}_\kappa $$ SLE κ curves (with$$\kappa = 16/3$$ κ = 16 / 3 for$$q=2$$ q = 2 ). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all$$q \in [1,4)$$ q [ 1 , 4 ) , thus providing further evidence of the expected CFT description of these models. 
    more » « less
  2. Abstract The minimum linear ordering problem (MLOP) generalizes well-known combinatorial optimization problems such as minimum linear arrangement and minimum sum set cover. MLOP seeks to minimize an aggregated cost$$f(\cdot )$$ f ( · ) due to an ordering$$\sigma $$ σ of the items (say [n]), i.e.,$$\min _{\sigma } \sum _{i\in [n]} f(E_{i,\sigma })$$ min σ i [ n ] f ( E i , σ ) , where$$E_{i,\sigma }$$ E i , σ is the set of items mapped by$$\sigma $$ σ to indices [i]. Despite an extensive literature on MLOP variants and approximations for these, it was unclear whether the graphic matroid MLOP was NP-hard. We settle this question through non-trivial reductions from mininimum latency vertex cover and minimum sum vertex cover problems. We further propose a new combinatorial algorithm for approximating monotone submodular MLOP, using the theory of principal partitions. This is in contrast to the rounding algorithm by Iwata et al. (in: APPROX, 2012), using Lovász extension of submodular functions. We show a$$(2-\frac{1+\ell _{f}}{1+|E|})$$ ( 2 - 1 + f 1 + | E | ) -approximation for monotone submodular MLOP where$$\ell _{f}=\frac{f(E)}{\max _{x\in E}f(\{x\})}$$ f = f ( E ) max x E f ( { x } ) satisfies$$1 \le \ell _f \le |E|$$ 1 f | E | . Our theory provides new approximation bounds for special cases of the problem, in particular a$$(2-\frac{1+r(E)}{1+|E|})$$ ( 2 - 1 + r ( E ) 1 + | E | ) -approximation for the matroid MLOP, where$$f = r$$ f = r is the rank function of a matroid. We further show that minimum latency vertex cover is$$\frac{4}{3}$$ 4 3 -approximable, by which we also lower bound the integrality gap of its natural LP relaxation, which might be of independent interest. 
    more » « less
  3. Abstract Let$$(h_I)$$ ( h I ) denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ I D , the set of dyadic intervals and$$h_I\otimes h_J$$ h I h J denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ( s , t ) h I ( s ) h J ( t ) ,$$I,J\in \mathcal {D}$$ I , J D . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ V ( δ 2 ) of$$h_I\otimes h_J$$ h I h J ,$$I,J\in \mathcal {D}$$ I , J D . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ L p [ 0 , 1 ] or the Hardy spaces$$H^p[0,1]$$ H p [ 0 , 1 ] ,$$1\le p < \infty $$ 1 p < . We say that$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ D ( h I h J ) = d I , J h I h J , where$$d_{I,J}\in \mathbb {R}$$ d I , J R , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ C : V ( δ 2 ) V ( δ 2 ) given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ C h I h J = h I h J if$$|I|\le |J|$$ | I | | J | , and$$\mathcal {C} h_I\otimes h_J = 0$$ C h I h J = 0 if$$|I| > |J|$$ | I | > | J | , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) , there exist$$\lambda ,\mu \in \mathbb {R}$$ λ , μ R such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ λ C + μ ( Id - C ) approximately 1-projectionally factors through D , i.e., for all$$\eta > 0$$ η > 0 , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ Id ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ A · B = 1 and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ λ C + μ ( Id - C ) - A D B < η . Additionally, if$$\mathcal {C}$$ C is unbounded onX(Y), then$$\lambda = \mu $$ λ = μ and then$${{\,\textrm{Id}\,}}$$ Id either factors throughDor$${{\,\textrm{Id}\,}}-D$$ Id - D
    more » « less
  4. Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ [ 0 , 1 ] k where$$k \ge 2$$ k 2 . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ x 1 , x 2 , , x n through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ i = 1 n | x i - x i + 1 | k 1 / k c k , where$$|x-y|$$ | x - y | is the Euclidean distance betweenxandy, and$$c_k$$ c k is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ x n + 1 x 1 . From the other direction, for every$$k \ge 2$$ k 2 and$$n \ge 2$$ n 2 , there existnpoints in$$[0,1]^k$$ [ 0 , 1 ] k , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ i = 1 n | x i - x i + 1 | k 1 / k = 2 1 / k · k . For the plane, the best constant is$$c_2=2$$ c 2 = 2 and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ c k = 9 2 3 1 / k · k for every$$k \ge 3$$ k 3 and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ c k = 2 1 / k · k , for every$$k \ge 2$$ k 2 . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ c k = 3 5 2 3 1 / k · k or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ c k = 2.91 k ( 1 + o k ( 1 ) ) . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ c 3 2 7 / 6 , which disproves the conjecture for$$k=3$$ k = 3 . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed. 
    more » « less
  5. We derive BM-like continuum models for the bands of superlattice heterostructures formed out of Fe-chalcogenide monolayers: (I) a single monolayer experiencing an external periodic potential, and (II) twisted bilayers with long-range moire tunneling. A symmetry derivation for the inter-layer moire tunnelling is provided for both the\Gamma Γ andM M high-symmetry points. In this paper, we focus on moire bands formed from hole-band maxima centered on\Gamma Γ , and show the possibility of moire bands withC=0 C = 0 or±1 ± 1 topological quantum numbers without breaking time-reversal symmetry. In theC=0 C = 0 region for\theta→0 θ 0 (and similarly in the limit of large superlattice period for I), the system becomes a square lattice of 2D harmonic oscillators. We fit our model to FeSe and argue that it is a viable platform for the simulation of the square Hubbard model with tunable interaction strength. 
    more » « less