skip to main content


Title: Twisted-bilayer FeSe and the Fe-based superlattices

We derive BM-like continuum models for the bands of superlattice heterostructures formed out of Fe-chalcogenide monolayers: (I) a single monolayer experiencing an external periodic potential, and (II) twisted bilayers with long-range moire tunneling. A symmetry derivation for the inter-layer moire tunnelling is provided for both the\GammaΓandMMhigh-symmetry points. In this paper, we focus on moire bands formed from hole-band maxima centered on\GammaΓ, and show the possibility of moire bands withC=0C=0or±1±1topological quantum numbers without breaking time-reversal symmetry. In theC=0C=0region for\theta→0θ0(and similarly in the limit of large superlattice period for I), the system becomes a square lattice of 2D harmonic oscillators. We fit our model to FeSe and argue that it is a viable platform for the simulation of the square Hubbard model with tunable interaction strength.

 
more » « less
Award ID(s):
1916958
PAR ID:
10481945
Author(s) / Creator(s):
;
Publisher / Repository:
SciPost Foundation
Date Published:
Journal Name:
SciPost Physics
Volume:
15
Issue:
3
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$aj,1x1++aj,kxk=0for$$j=1,\dots ,m$$j=1,,mwith coefficients$$a_{j,i}\in \mathbb {F}_p$$aj,iFp. Suppose that$$k\ge 3m$$k3m, that$$a_{j,1}+\dots +a_{j,k}=0$$aj,1++aj,k=0for$$j=1,\dots ,m$$j=1,,mand that every$$m\times m$$m×mminor of the$$m\times k$$m×kmatrix$$(a_{j,i})_{j,i}$$(aj,i)j,iis non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$AFpnof size$$|A|> C\cdot \Gamma ^n$$|A|>C·Γncontains a solution$$(x_1,\dots ,x_k)\in A^k$$(x1,,xk)Akto the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$x1,,xkAare all distinct. Here,Cand$$\Gamma $$Γare constants only depending onp,mandksuch that$$\Gamma Γ<p. The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$x1,,xkin the solution$$(x_1,\dots ,x_k)\in A^k$$(x1,,xk)Akto be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$x1,,xkare not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.

     
    more » « less
  2. Abstract

    The electricE1 and magneticM1 dipole responses of the$$N=Z$$N=Znucleus$$^{24}$$24Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$24Mg($$\gamma ,\gamma ^{\prime }$$γ,γ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$Jπ=1-, four$$J^{\pi }=1^+$$Jπ=1+, and six$$J^{\pi }=2^+$$Jπ=2+states in$$^{24}$$24Mg. De-excitation$$\gamma $$γrays were detected using the four high-purity germanium detectors of the$$\gamma $$γELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$B(M1)=2.7(3)μN2is observed, but this$$N=Z$$N=Znucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$B(E1)0.61×10-3 e$$^2 \, $$2fm$$^2$$2. The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$B(Π1,1iπ21+)/B(Π1,1iπ0gs+)branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$24Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ρ2(E0,02+0gs+)strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$B(M1,1+02+)/B(M1,1+0gs+)branching ratio of the 10.712 MeV$$1^+$$1+level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$Δβ22between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$02+level.

     
    more » « less
  3. Abstract

    We consider integral area-minimizing 2-dimensional currents$T$Tin$U\subset \mathbf {R}^{2+n}$UR2+nwith$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$T=QΓ, where$Q\in \mathbf {N} \setminus \{0\}$QN{0}and$\Gamma $Γis sufficiently smooth. We prove that, if$q\in \Gamma $qΓis a point where the density of$T$Tis strictly below$\frac{Q+1}{2}$Q+12, then the current is regular at$q$q. The regularity is understood in the following sense: there is a neighborhood of$q$qin which$T$Tconsists of a finite number of regular minimal submanifolds meeting transversally at$\Gamma $Γ(and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$Q=1$Q=1. As a corollary, if$\Omega \subset \mathbf {R}^{2+n}$ΩR2+nis a bounded uniformly convex set and$\Gamma \subset \partial \Omega $ΓΩa smooth 1-dimensional closed submanifold, then any area-minimizing current$T$Twith$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$T=QΓis regular in a neighborhood of $\Gamma $Γ.

     
    more » « less
  4. Abstract

    It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$Lβ,γ=-divDd+1+γ-nassociated to a domain$$\Omega \subset {\mathbb {R}}^n$$ΩRnwith a uniformly rectifiable boundary$$\Gamma $$Γof dimension$$d < n-1$$d<n-1, the now usual distance to the boundary$$D = D_\beta $$D=Dβgiven by$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$Dβ(X)-β=Γ|X-y|-d-βdσ(y)for$$X \in \Omega $$XΩ, where$$\beta >0$$β>0and$$\gamma \in (-1,1)$$γ(-1,1). In this paper we show that the Green functionGfor$$L_{\beta ,\gamma }$$Lβ,γ, with pole at infinity, is well approximated by multiples of$$D^{1-\gamma }$$D1-γ, in the sense that the function$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$|D(ln(GD1-γ))|2satisfies a Carleson measure estimate on$$\Omega $$Ω. We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).

     
    more » « less
  5. Abstract

    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ρ0meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$μ+and$$ \mu ^{-}$$μ-beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$c2$$< W<$$<W<17.0 GeV/$$c^2$$c2, 1.0 (GeV/c)$$^2$$2$$< Q^2<$$<Q2<10.0 (GeV/c)$$^2$$2and 0.01 (GeV/c)$$^2$$2$$< p_{\textrm{T}}^2<$$<pT2<0.5 (GeV/c)$$^2$$2. Here,Wdenotes the mass of the final hadronic system,$$Q^2$$Q2the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$pTthe transverse momentum of the$$\rho ^0$$ρ0meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$γTVL) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ρ0production.

     
    more » « less